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ABSTRACT 

Gene therapy involves the delivery of nucleic acid material to target cells in order 

to alter expression of an important protein, leading to the alleviation of symptoms of a 

disease. Using vehicles or vectors to carry the genetic material dramatically enhances its 

successful delivery to the target cells. These vectors can be divided into two main 

categories, viral and non-viral systems. For the work performed here, the focus was on 

improving the efficacy of non-viral vectors (made of cationic polymers) in terms of 

improving transgene expression and reducing cytotoxicity in both in vitro and in vivo 

systems.  

When cationic polymers are mixed with plasmids (pDNA), they form polyplexes 

which protect pDNA from hash environments and deliver pDNA to target cells. In 

Chapter 2, polyplexes comprising chitosan and pDNA were formed and two types of 

pDNA (with and without CpG sequences) were investigated. It was found that chitosan 

polyplexes containing pDNA without CpG sequences exhibited higher transfection 

efficiencies and lower inflammatory responses in mice lungs than polyplexes containing 

pDNA with CpG sequences present. Thus it was apparent that, in order to obtain optimal 

gene expression with minimal cytotoxicity, the presence of CpG sequences in the pDNA 

of the polyplexes played an important role. 

In Chapter 3, a novel cationic co-polymer, poly(galactaramidoamine), or PGAA, 

was tested for its transfection efficiency and cytotoxicity in vitro. PGAA/pDNA polyplexes 

generated high transfection efficiencies in two types of cell lines, HEK293 and 

RAW264.7.  Cytotoxicity of PGAA/pDNA polyplexes increased as the nitrogen to 

phosphate (N/P) ratios increased. 

High-content screening (HCS) has gained interest in cellular imaging because of 

its ability to provide statistically significant data from multiple parameters simultaneously 

in cell-based assays. In Chapter 4 HCS was used to measure transfection efficiencies 
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and cytotoxicities of polyplexes made from fluorescently labeled polyethylenimine (PEI) 

and pDNA encoding EGFP in HEK293 cells. We also showed that there were 4 – 5 

polyplexes found in the cytoplasm of successfully transfected cells, while there was less 

than 1 polyplex, on average, within the cytoplasm of non-transfected cells. Our findings 

suggest that HCS has the potential to be used as a tool in the field of gene delivery. 

HCS does not only simultaneously measure transfection efficiency and cytotoxicity of 

various non-viral gene vectors; it can also be used to track such vectors through various 

subcellular compartments. 

Our research goal was to develop polyplex formulations made from cationic 

polymers that generate high transfection efficiencies and low toxicities. We found that 

pDNA composition was an important parameter with respect to its influence on 

transgene expression and inflammatory responses. We also introduce a new system to 

the gene delivery field (high-content screening) with the hope that this could help 

elucidate and overcome pathways of, and barriers to, successful non-viral based gene 

delivery systems, respectively. 
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PUBLIC ABSTRACT 

Gene therapy is the process of delivering genetic material, such as DNA 

(encoding for an important protein) into a patient’s cells in order to treat a particular 

disease such as a genetic disorder or heart disease. This process of DNA delivery into 

cells is known as “transfection” and it is important that the efficiency of transfection be 

optimized such that a patient can obtain maximum therapeutic benefit from such a 

treatment. DNA is susceptible to being destroyed by harsh physiological environments 

prior to reaching its target. This problem can be diminished with the use of vectors that 

not only protect against harsh conditions but also encourage entry into cells. By mixing 

1) DNA with 2) positively charged polymers, “polyplexes” form which protect DNA from 

degradation and increase transfection efficiency. 

The development of effective polyplex formulations requires optimization. In the 

work presented here, it was discovered that when polyplexes contained specific 

sequences within the DNA called “CpG”, this lowered transfection efficiencies and 

increased inflammatory responses compared to DNA without CpG, as measured using a 

mouse lungs model. Thus, DNA composition played an important role in influencing DNA 

transfection efficiency of polyplexes. Another aspect to take into account is the degree of 

positive charge of the polymer. We tested a new polymer called 

poly(galactaramidoamine) or PGAA. We found that this PGAA can form polyplexes with 

DNA and could be used in gene therapy. At the present time, mechanisms by which the 

polyplexes get inside and transfect the cells are still unclear. We also introduced a new 

system called high-content screening to the gene delivery field. This system offers 

automated measurements of transfection efficiency and cytotoxicity and could be used 

to reveal the polyplexes trafficking inside cells. 
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CHAPTER 1 INTRODUCTION 

Gene therapy involves the intracellular introduction, in vivo, of nucleic acid 

material capable of altering expression of a specific protein(s) in order to alleviate the 

symptoms of a disease 1. Normally, gene therapy involves DNA, encoding for a desired 

protein, which is introduced into target cells in order to restore expression of that vital 

protein 2, 3. Although in the past, gene therapy has been focused on treating genetic 

disorders such as cystic fibrosis 4-7, hemophilia 8-10 and sickle cell anemia 11, now a 

range of other diseases are also targets for gene therapy 12, such as cancer 13-16, 

autoimmune diseases 17, 18, neurodegenerative diseases 19, 20 and cardiovascular 

diseases 21-23.  

Usually, in gene therapy, the genetic material (or transgene) is delivered to target 

cells via vehicles, or vectors. Once inside the cells, the genetic material is released from 

the vector and then transcribed within the nucleus and then translated into the desired 

therapeutic protein within the cytosol 1, 12.  Vector systems for gene delivery can be 

divided into two categories, viral and non-viral. Viral vectors are viruses that have been 

modified to limit viral replication as well as to make room for insertion of the gene(s) of 

interest. Examples of viral vectors include adenoviruses, adeno-associated viruses, 

retroviruses, and lentiviruses, all of which are modified to prevent viral replication 24. 

Non-viral vectors include inorganic substances (such as calcium phosphate), cationic 

lipids, as well as synthetic and natural polymers. Of the two, viral vectors are the more 

effective gene delivery vehicles, yielding high transfection efficiencies in vivo 2, 3, 25, 26.  

However, viral vectors have issues with respect to their safety profiles, particularly since 

they can cause unwanted immunogenic responses and cytotoxicity 27. Another concern 

for certain viral vectors is the risk of virus insertional mutagenesis which can interfere 

with critical cellular functions or be the cause of oncogenesis 28, 29. The concept of gene 

therapy was promulgated in the 1970s when Friedmann and Roblin published a paper in 
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Science: “Gene therapy for human genetic disease?” 30. Since then, gene therapy 

whether viral or non-viral, has been continuously in development. To date, there are 

more than 1800 clinical trials in gene therapy that have been completed or ongoing 

worldwide 31. Currently, the first and only gene therapy treatment in the western world 

that has been approved by the European Commission is alipogene tiparvovec (Glybera®) 

using adeno-associated virus serotype 1 (AAV1)- viral vector for the treatment of 

lipoprotein lipase deficiency (LPLD) 32. Although in clinical trials, this treatment showed 

promising efficacy and low immunogenicity 33-35, the cost for Glybera® is approximate 

$1.4 million per one patient and all patients receiving Glybera® are followed for 15 years 

in order to assess long-term efficacy and safety 36, 37. Although viral vectors provide high 

transfection efficiencies and long-term gene expression and have been the dominant 

gene vector system in clinical trials, the safety concerns and the extremely high cost of 

therapy are still major barriers. Consequently, the use of viral vectors in clinical trials has 

decreased significantly over the past decade 1.  Recently, non-viral vectors have drawn 

attention in the gene therapy field. On the other hand, the use of alternative modes of 

gene delivery has gradually increased in clinical trials over the past 10 years (18.3% of 

all trials in 2013 compared to 14% in 2004 38, 39).  When compared with viral vectors, 

non-viral vectors, especially polymer-based, have lower immunogenicity and toxicity 1, 40. 

Another advantage of non-viral vectors is the ease of production which leads to lower 

costs. The main drawback of using non-viral vectors is their lower transfection 

efficiencies compared to viral vectors.  

Of the non-viral vectors, cationic polymers have been used extensively at the 

pre-clinical stage. Cationic polymers condense the genetic material (plasmid DNA, 

pDNA), which is negatively charged, upon mixing to form polyplexes through an 

electrostatic interaction. These self-assembling polyplexes condense pDNA into small 

dense structures. The size, morphology and surface charge of these polyplexes depend 

on the characteristics of the cationic polymers as well as the formulation details, such as 



www.manaraa.com

3 
 

pDNA concentration, buffer conditions, mixing order and the ratio of the cationic group in 

the polymer (amine) to the anionic group in pDNA (phosphate) 41, 42. These polyplexes 

can protect pDNA from harsh environmental conditions, facilitate cell uptake and release 

DNA intracellulary close to or at the site of action (nucleus) 43, 44. At the present time, the 

internalization mechanism of polyplexes is not well understood 45. For cellular uptake, 

the cationic polyplexes bind to the plasma membrane (anionic) through electrostatic 

interactions and are internalized possibly by endocytic pathways such as clathrin-

mediated endocytosis, caveolae-mediated endocytosis or micropinocytosis 46-48. 

Moreover, it has been reported that uptake can occur through clathrin- and caveolin-

independent endocytosis 46. After internalization, the polyplexes stay in the endosomes 

which can fuse with lysosomes for degradation. Therefore, polyplexes have to escape 

from the endosome in order to successfully transfect cells.  A hypothesis called “proton 

sponge” was proposed by Boussif et al. in 1995 49. They studied the cationic polymer, 

poly(ethylenimine) (PEI), for gene delivery purposes. According to the theory, the amine 

groups in cationic polymers can be protonated, offering a large buffering capacity during 

endosomal acidification. This protonation induces an influx of chloride ions and water. 

Finally, the osmotic swelling leads to endosomal rupture resulting in the release of 

polyplexes, vectors and/or pDNA into the cytoplasm 49, 50. The proton sponge hypothesis 

is the most accepted mechanism in explaining endosomal escape in cationic polymers 

containing amine groups 50-52. However, the legitimacy of this theory is still in debate 53-

56. After endosomal escape, the polyplexes should release the pDNA next to or inside 

the nucleus for transcription to occur. It is possible that polyplexes could travel through 

the cytoplasm toward the nucleus on microtubules via active transport 57. The Nuclear 

membrane surface contains very small nuclear pores (approximately 10 nm in diameter) 

which are channels for transporting small proteins, ions and metabolites in and out of the 

nucleus 58, 59. This is much smaller than the size of the polyplexes (100 – 500 nm in 

diameter). The mechanism of delivering pDNA to the nucleus by cationic non-viral 
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vectors is still unknown. The most widely accepted assumption is that nuclear 

translocation of pDNA occurs during mitosis when there is no nuclear membrane 48. 

Although there have been many studies conducted in an attempt to investigate 

intracellular delivery of polyplexes, the knowledge in this area is still lacking. 

Among the cationic polymers being used as non-viral vectors, PEI has been 

considered the gold standard for transfection in vitro and in vivo and is a promising 

alternative carrier to viral vectors 60-62. The factors that contribute to the ability of PEI 

complexes to mediate efficient transfection include: enhanced protection of DNA from 

enzymatic degradation, enhanced internalization by cells, and the ability to mediate 

endosomal escape and then release the DNA 49. A drawback of PEI is its toxicity and 

non-degradability 63. Recently, biodegradable polymers have gained interest in the gene 

delivery field. Because of their biodegradability, these polymers show low toxicity and 

can be readily cleared from the body. Thus, these biodegradable polymers can be given 

to patients for repeated systemic therapeutic use. An example of a biodegradable and 

biocompatible cationic polymer used in gene therapy is chitosan 64-68. Although chitosan 

has low toxicity, its transgene expression is also low. To overcome the problems of low 

transfection efficiency and high toxicity, various cationic polymers and polyplex 

formulations have been modified in the hope of creating efficient gene delivery systems.   

Research Objective 

The ultimate goal of this research was to develop and investigate polyplex 

formulations made from cationic polymers that were capable of mediating high 

transfection efficiencies and low cytotoxicities, therefore rendering them as strong 

candidates for use in non-viral gene delivery. 

Rational 

This research has been divided into three parts. The first section concerns an 

investigation of the transfection efficiency, toxicity and immunogenicity of polyplex 
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formulations as applied to both in vitro and in vivo situations. For this purpose, chitosan, 

one of the most studied non-viral vectors was chosen. Chitosan is well known as a 

biodegradable, biocompatible and low toxicity polymer when used as a non-viral vector 

69. Moreover, chitosan and modified chitosan have been shown to be effective 

transfection reagents in both in vitro and in vivo models 65, 68, 70-72. Rather than optimizing 

transfection efficiency through comparisons of chitosan and modified chitosan 

formulations, which has already been extensively studied, it was instead chosen, in this 

study section, to investigate another less explored parameter influencing polyplex 

development and consequently transfection efficiency, which is pDNA composition. To 

explain, many pDNA vectors contain unmethylated 5’-cytosine-guanosine-3’ dinucleotide 

(CpG) sequences, which can potentially induce inflammatory responses through the 

production of proinflammatory cytokines 73, 74. This is because these CpG motifs are 

recognized as “foreign” in vertebrates by the innate immune system, as they are 

commonly found in bacterial DNA but rarely found in vertebrates 75. The immunogenic 

nature of CpG motifs may reduce in vivo transfection efficiencies of plasmids that harbor 

them 76. In this study, pDNA with or without CpG sequences were used to create 

chitosan polyplexes (CSpp). These polyplexes were tested for transfection efficiencies 

and cytotoxicity in both in vitro and in vivo models.   

The second part of the overall research presented here was to test a recently 

invented cationic polymer, poly(galactaramidoamine) or PGAA 77-79.  PGAA is a member 

of the poly(glycoamidoamine)s family which was synthesized by the polymerization of a 

mixture of dimethyl-meso-galactarate and pentaethylenehexamine 77. PGAA synthesis 

was influenced by chitosan and PEI. Amine density in polymer structures directly affects 

cytotoxicity and transfection efficiency. High amine density results in high transfection 

efficiency and high cytotoxicity. Reducing the amine content can reduce cytotoxicity but 

also results in low transfection efficiencies 78, 80. Having amine densities higher than 

chitosan and lower than PEI, PGAA was designed to have low cytotoxicity and high 
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transfection efficiency  78. Thus, PGAA has the potential to be a good cationic non-viral 

vector. In this study, the transfection efficiency and cytotoxicity mediated by polymeric 

PGAA non-viral vectors were evaluated. The study was conducted using previously 

untested cell lines, human embryonic kidney cells (HEK293) and mouse macrophage 

cells (RAW264.7)).  

At the present time, there are more than 30 groups of polymers that are 

commonly being investigated in preclinical studies as non-viral gene delivery vectors 43, 

81. Since non-viral vectors are gaining more interest in the gene therapy field of late, it is 

expected that this number will increase. To find optimal transfection conditions for each 

cationic polymer, many optimization experiments need to be conducted. Although gene 

delivery has been in use for decades, intracellular trafficking and transfection 

mechanisms of cationic polymers are still unclear 45. This knowledge is necessary to 

improve our understanding of the extracellular and intracellular barriers to transfection in 

order to design an ideal non-viral vector to overcome these barriers, thereby yielding 

high transfection efficiencies with minimal toxicity 82. Using high-content screening 

(HCS), which is a combination of high-throughput techniques and multicolor fluorescent 

cellular imaging 83, 84, may help elucidate the mechanisms of, and barriers to, non-viral 

vector mediated transfection. For the last section of this research, HCS has been 

introduced as a tool in understanding gene delivery. In this section, PEI, the gold 

standard for non-viral gene vector was chosen because of its well characterized 

transfection efficiency and cytotoxicity. 

Organization 

This dissertation is divided into five chapters. This first chapter includes an 

introduction to the research, a research objective and rational, organization and peer 

collaborated efforts. 
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Chapter two provides the methodologies in making CSpp from purified low 

molecular weight chitosan and two types of pDNA (with and without CpG sequences) 

along with the full characterization of the polyplexes. These polyplexes were tested for 

transfection efficiencies and cytotoxicities in cell lines. These polyplexes have been 

tested for their capacity to promote inflammatory responses (such as total white blood 

cell count and cytokine levels obtained from bronchoalveolar lavages) along with 

transfection efficiencies in murine lung models. 

Chapter three describes the methodologies in making PGAA polyplexes as well 

as polyplex characterizations. These polyplexes were tested for transfection efficiencies 

and cytotoxicities in two different cell lines. 

Chapter four describes the methodologies of preparing polyplexes made from 

two types of PEI (fluorescently labeled branched-PEI and branched PEI) with pDNA 

encoding green fluorescent protein (pGEFP-N1) and transfecting them into a cell line 

(HEK293). The transfection efficiency and cytotoxicity was measured using a HCS 

instrument. Transfection efficiency and cytotoxicity results were confirmed with manual 

counting and CellTiter 96® AQueous One Solution Cell proliferation assay (MTS assay), 

respectively. Moreover, we attempted to investigate intracellular trafficking of these 

polyplexes by quantifing the number of polyplexes inside the nucleus and cytoplasm 24 

hours post-transfection. 

Chapter five is the conclusion of this research, what knowledge was gained and 

how this knowledge can be applied in the non-viral gene therapy field in the future. 

Peer Collaborated Efforts 

The content in Chapter 2 involved quantifying endotoxin in chitosan, intranasal 

instillation of the polyplexes into mice lungs, collecting and analysing lung lavages for 

assessment of inflammatory responses and was a collaborative effort with Professor 

Peter Thorne, Andrea Adamcakova-Dodd, Nervana Metwali and Wei Xie at Department 
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of Occupational and Environmental Health, University of Iowa. Detection of ROS 

precursors (superoxide anions) in vitro after cells were exposed to CSpp was guided by 

Professor Douglas Spitz and Kranti A. Mapuskar at Department of Radiation Oncology, 

Carver College of Medicine, University of Iowa. 

The content in Chapter 4 involved HCS techniques and image analysis and was 

a collaborative effort with Meng Wu, Director of High Throughput Screening Facility, 

Division of Medicinal and Natural Products Chemistry, College of Pharmacy and 

Department of Biochemistry, Carver College of Medicine, University of Iowa. 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

9 
 

CHAPTER 2 THE ABSENCE OF CPG IN PLASMID DNA-CHITOSAN 

POLYPLEXES ENHANCES TRANSFECTION EFFICIENCIES AND 

REDUCES INFLAMMATORY RESPONSES IN MURINE LUNGS 

Introduction 

Chitosan,an abundant linear polysaccharide derived from crustacean shells, is 

composed of random β-(1-4)-linked D-glucosamines (deacetylated units) and N-acetyl-

D-glucosamines (acetylated units) where the number of N-acetyl-D-glucosamine units 

constitute < 50% (Figure 2-1) 85. Chitosan has applications in many areas including 

water treatment, the food industry, and agriculture 86, 87. And because of its 

biodegradability and biocompatibility, chitosan has been studied intensively for its 

therapeutic applications in drug and gene delivery systems 64, 65, 68, 85, 88. Chitosan has a 

pKa value of ~6.5. As the pH of the solvent decreases, below 6.5, the concentration of 

protonated amine groups in chitosan increases and therefore chitosan can be dissolved 

in most aqueous acids. Chitosan has gained interest as a cationic non-viral gene 

delivery vector because of its: (i) relative ease of preparation in aqueous acidic solutions; 

(ii) low toxicity; and (iii) ability to condense DNA which provides protection against 

nuclease degradation 89, 90. The molecular weight and degree of deacetylation of 

chitosan influence its physical and chemical properties. For gene delivery purposes, low 

molecular weight chitosan having a degree of deacetylation higher than 80 percent 

yields high transfection efficiencies and low toxicities 64, 91, 92. Chitosan can be degraded 

by various enzymes such as lysozyme, collagenase, β-glucosidase, N-

acetylglucosaminidase and human chitinase 93-96. This biodegradable property of 

chitosan could help in releasing pDNA from chitosan/pDNA polyplexes (CSpp) in 

physiological conditions. 

Previous studies have shown that CSpp are particularly promising as gene 

delivery formulations for treatment of pulmonary pathologies 97, 98 such as cystic fibrosis 
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99, 100, asthma 101 and lung cancer 102. Although chitosan causes minimal cytotoxicity and 

is generally non-inflammatory, a drawback is its low transfection efficiency when 

compared to viral vectors and non-viral synthetic vectors such as polyethylenimine (PEI) 

103, 104. Thus, most of the studies involving CSpp delivery have been focused on 

strategies to improve transfection efficiency such as optimizing the molecular weight and 

the degree of deacetylation of chitosan 70, 105, 106, as well as establishing appropriate 

amine to phosphate ratios (N/P) of chitosan/DNA polyplexes 106. Mixing chitosan with 

other cationic gene vectors 107, 108 and/or modifying the structure of chitosan has also 

resulted in enhanced transfection efficiencies 109-111.  

The toxicity of pure or chemically modified chitosan has been investigated in its 

free form as well as in the form of micro and nanoparticles. It is well known that pure 

chitosan is considered non-toxic 112-115. The LD50 of chitosan in mice has been shown to 

exceed 16 g/kg body weight when orally administered to mice 85. Culturing chitosan 

nanoparticles, prepared by ionotropic gelation with pentasodium tripolyphosphate, with a 

cell line derived from human conjunctival epithelium, had no effect on cell viability 

compared to untreated cells 116. In addition, it has been reported that CSpp have little or 

no significant impact on cell viability in vitro for a range of cell types 97, 117-119. This is in 

contrast to commonly used transfection reagents such as LipofectAMINETM 2000 which 

can be highly cytotoxic 120. Despite showing promise in cytotoxicity assays in vitro, a 

thorough characterization of the cytotoxicity and inflammation induced by CSpp in vivo, 

particularly with respect to pulmonary delivery needs further investigation. 

Aside from chitosan, pDNA itself may also play a critical role in the cytotoxicity 

and inflammation imparted by CSpp in vivo. In pDNA vectors, unmethylated 5’-cytosine-

guanosine-3’ dinucleotide (CpG) sequences, which are found in DNA from bacteria and 

rarely in vertebrates 121, can potentially induce inflammatory responses through the 

production of proinflammatory cytokines. This may result in lowered transfection 

efficiencies 76. Schwartz et al. found that intratracheal instillation of bacterial DNA 
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(containing abundant CpG motifs) to mice induced higher influxes of neutrophils and 

increased proinflammatory cytokine production in mouse bronchoalveolar lavage (BAL) 

fluids than intratracheal instillation of calf thymus DNA (containing low numbers of CpG 

motifs) 73. Yew et al. reported that nasal instillation of complexes comprised of cationic 

lipids and CpG-depleted pDNA resulted in lower proinflammatory cytokine levels in BAL 

fluid when compared to the complexes comprising CpG-rich pDNA 122. Additionally, 

Hyde et al. compared pulmonary inflammatory responses to complexes comprising 

cationic liposomes and various plasmids containing varying numbers of unmethylated 

CpG sequences per plasmid. It was found that intranasal administration of complexes 

made with CpG-free plasmids produced no inflammatory responses while the presence 

of one unmethylated CpG sequence per plasmid was enough to trigger inflammatory 

responses 123. Lesina et al. showed that PEI complexes with a CpG-free plasmid 

administered in aerosolized form resulted in 60 times higher luciferase expression in the 

lung than that of PEI complexes containing plasmid with unmethylated CpG sequences 

124. Although both types of PEI complexes increased inflammatory cytokine levels at 1 

hour after administration, the cytokine levels of mice treated with PEI complexes with 

CpG-free plasmid reverted back to normal after 24 hours while the others remained 

elevated 125. 

Specific aims for this study are: 

1. To characterize chitosan/pDNA polyplexes (CSpp), evaluate their cytotoxicity 

in vitro and determine the degree of pulmonary inflammation following 

delivery to mouse lungs using intranasal instillation 

2. To determine whether unmethylated CpG sequences in plasmid DNA 

influence transfection efficiency and inflammation in vivo by comparing CSpp 

containing unmethylated CpG [CpG(+)] with CSpp containing methylated 

CpG [CpG(-)] 
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Materials and Methods 

Chitosan purification  

Low molecular weight chitosan from Blue waters crab shells was purchased from 

Sigma-Aldrich, Co. (St. Louis, MO), Product number 448869, Lot# MKBF2754V. 

According to the manufacturer’s certificate of analysis, the deacetylation degree was 

96.1%. The viscosity of 1% (w/w) chitosan in 1% (v/v) acetic acid was 35 cps. Based on 

the viscosity, the molecular weight is approximately 50,000 – 190,000 daltons. Chitosan 

was purified according to a previously published method with some modifications 126, 127. 

Chitosan, 2 g, was dissolved in 200 ml of 1% (v/v) acetic acid (to generate a 1% w/v 

chitosan solution) by dispersing slowly onto the surface of the acetic acid solution with 

continuous stirring, and  unwanted insoluble substances were filtered out with 

Whatman™ 541 filter paper (GE Healthcare, Amersham Place Little Chalfont, 

Buckinghamshire, UK). Small insoluble particles such as residual chitin, protein, 

polysaccharides and polysaccharide conjugates from chitosan starting materials 126 that 

went through the filter paper were separated out from chitosan solution by centrifugation 

of the chitosan solution at 10,016 x g for 1 hour (accuSpinTM 400, Thermo Fisher 

Scientific Inc., Rockford, IL). The supernatant was titrated with 1 N NaOH to pH ~ 8.5 to 

create insoluble chitosan. Precipitated chitosan was collected by filtration using 

Whatman™ 541 filter paper. Insoluble chitosan was redispersed in 0.1 M sodium 

bicarbonate solution, pH 8.3. Deproteinization and demetallization were performed by 

adding 0.5% (w/v) sodium dodecyl sulfate (SDS) and 20 mM ethylenediaminetetraacetic 

acid (EDTA) disodium salt. At this stage, it is important to keep the pH between 7.0 – 8.5 

to avoid an interaction between chitosan and SDS 126. Insoluble chitosan was collected 

via filtration through a Whatman™ 541 filter paper , dialyzed (SnakeSkin® dialysis tubing; 

10K MWCO, Thermo Fisher Scientific Inc., Rockford, IL) and lyophilized using a 
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FreeZone 4.5-L Benchtop Freeze Dry System (Labconco Corporation, Kansas City, 

MO).  

Purified chitosan and unpurified chitosan in the soluble and insoluble form were 

tested for endotoxin by Peter S. Thorne’s laboratory, University of Iowa, using a 

modification of the kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay (Lonza, 

Walkersville, MD) according to the company protocol 128.  

Plasmid amplification and purification 

Two types of plasmids used in this study were pCpG-Luc (CpG(-)) (InvivoGen™, 

San Diego, CA) and VR1255 (CpG(+)) (Vical®, San Diego, CA). CpG(-) was completely 

devoid of CpG motifs (4696 bps). CpG(-) encoded firefly luciferase and the ZeocinTM 

resistance gene. The CpG(+) plasmid contained CpG motifs (6413 bps). CpG(+) 

encoded firefly luciferase and the kanamycin resistance gene. CpG(-) and CpG(+) was 

transformed into Eschrichia coli (E. coli) GT115 and E. coli DH5α, respectively. Both 

plasmids were amplified by first streaking E.coli containing the plasmid of interest in 

Lennox L Agar (875 mg in 25 ml of nanopure water, RPI Research Products 

International Corp, Mt. Prospect, IL) and incubated overnight at 37C, inverted. Lennox L 

Broth was prepared by dissolving Lennox L Broth powder 20 g in 1 L of nanopure water, 

(RPI Research Products International Corp, Mt. Prospect, IL). A single colony was 

added into 5 ml of Lennox L Broth medium. This was incubated in a shaker at 37C, 300 

rpm for 6 hours. After the culture started to become turbid, the medium containing 

bacteria was added into 500 ml of Lennox L Broth medium and incubated in a shaker 

(300 rpm) at 37°C overnight. Both Lennox L Agar and Lennox L Broth contain 50 µg/ml 

of ZeocinTM (Invitrogen life technologies, Carlsbad, CA) for CpG(-) selection and 100 

µg/ml of kanamycin (RPI Research Products International Corp, Mt. Prospect, IL) for 

CpG(+) selection. 
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All plasmids were purified using a GenElute™ HP Endotoxin-Free Plasmid 

Maxiprep Kit (Sigma-Aldrich Co., St. Louis, MO), according to the manufacturer’s 

protocol. pDNA concentrations were determined using a NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). An absorbance ratio of 

260 nm to 280 nm was used to access the quality of extracted pDNA. The 260/280 ratio 

of approximately 1.8 indicated a pDNA preparation free of protein contamination  129. 

Preparation of CSpp 

The CSpp were prepared by ionic interaction between positively charged 

chitosan and negatively charged pDNA molecules 117. In this study, dextran sulfate 

(sodium salt) (5 kDa, Sigma-Aldrich, Co., St. Louis, MO) was introduced into the 

formulation to weaken the complexation of chitosan and DNA in order to limit excessive 

retention of DNA and thus ensure higher transgene expression 127. 

CSpp were formulated at different ratios of nitrogen (N) atoms in chitosan able to 

be protonated to phosphate (P) groups in the pDNA backbone (N/P ratios) 77. Chitosan 

solutions were prepared by dissolving the lyophilized purified chitosan in 1% (v/v) acetic 

acid solution, then adjusting to pH 5.5 - 5.7 using 1 N NaOH. Then 50 mM acetate buffer 

(pH 5.5) was added to the prepared solution to achieve a final chitosan concentration of 

5 mg/ml. Dextran sulfate stock solution (1 mg/ml) was prepared in UltraPure™ 

DNase/RNase-Free distilled water (Invitrogen™, Grand Island, NY). Dextran 

sulfate:chitosan (1:10 (w/w)) was used in this study. Plasmid DNA (CpG(-) or CpG(+)) in 

UltraPure™ DNase/RNase-free distilled water (200 µg/ml for in vitro and 1000 µg/ml for 

in vivo experiments) was heated in a controlled temperature water bath to 50 – 55C 

prior to mixing. All solutions were sterilized by filtering with a 0.22 µm syringe filter 

(Millex®-GS, Millipore Corporation, Billerica, MA). An equal volume (not more than 500 

µl) of the desired concentration of cationic solution (chitosan) was pipetted into the 

anionic solution (pDNA) and then vortexed immediately for 20 – 30 seconds. The 
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polyplex suspensions were incubated at room temperature for 30 minutes before use. 

The final concentrations of pDNA after polyplex formation were 2.5 µg/50 µl (in vitro) and 

12.5 µg/50 µl (in vivo). The conditions used to prepare CSpp were optimal for yielding 

stable and compact CSpp 127, 130. All polyplexes were freshly prepared in all experiments. 

As a positive control in the in vitro transfection experiments, branched PEI, MW 

25 kDa (Sigma-Aldrich, Co., St. Louis, MO) was used to make polyplexes at a N/P ratio 

of 10 (Figure 2-2). These types of PEI/pDNA polyplexes (PEIpp) have previously 

displayed strong transfection efficiencies generating high luciferase activity in HEK293, 

COS7 and HeLa cell lines 131. To prepare PEIpp, a stock solution (1 mg/ml) of PEI in 

UltraPure™ DNase/RNase-free distilled water was diluted to the desired concentration 

and mixed with pDNA in the same manner as CSpp. 

Determination of size, polydispersity index and zeta 

potential of CSpp 

Particle size, polydispersity index (PdI) and zeta potential of CSpp (at N/P ratios 

of 1, 5, 10, 20, 60 and 100) that were prepared at the concentration of 2.5 µg of pDNA 

per 50 µl total volume and PEIpp (at N/P ratio of 10) were measured using dynamic light 

scattering (DLS) via the Zetasizer Nano ZS (Malvern Instrument Ltd., Westborough, 

MA). Size and zeta potential measurements were performed on CSpp and PEIpp that 

were dispersed in acetate buffer solution, pH 5.46 and water, respectively at 25C. The 

particle size and PdI were measured using 173° backscatter detection in disposable 

polystyrene cuvettes (DTS0012) with the total volume of the solution equal to 1 ml. Zeta 

potential was measured in a zeta potential folded capillary cell (DTS1060) with the total 

volume of 0.75 ml. 

For the animal study, the particle size, PdI and zeta potential of CSpp at a N/P 

ratio of 10, prepared at the concentration of 12.5 µg of pDNA per 50 µl total volume, 

were measured as described above for CSpp (2.5 μg/50 μl). 
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Macroscopic imaging of CSpp 

When CSpp were formed at a very high pDNA concentration, CSpp can form 

clumps and precipitates that are large enough to be visible to the naked eye. CSpp (at a 

N/P ratio of 10), freshly prepared at the concentrations of 2.5, 12.5, 25.0 and 50.0 µg of 

pDNA per 50 µl total volume, were imaged using Olympus Stereoscope DP (Olympus 

Scientific Solutions Americas Corp., Waltham, MA) without any staining. 

Microscopic imaging of CSpp 

The morphology of CSpp was observed using Transmission Electron Microscopy 

(TEM). Freshly prepared CSpp were diluted with sterile water that was filtered through a 

0.22 µm filtration membrane. A drop of each of the diluted polyplexes was left on carbon 

coated Formvar in ethylene dichloride film (Electron Microscopy Sciences, Hatfield, PA) 

on a 400-mesh TEM copper grid for 2 minutes. Then, Whatman® filter paper was used to 

remove any excess liquid and air dried. Uranyl acetate (Electron Microscopy Sciences, 

Hatfield, PA) was used for the staining. Uranyl acetate (1% (w/v)) was prepared by 

dissolving 0.1 mg of uranyl acetate in 10 ml of distilled water, centrifuged at the 16100 x 

g and a clear supernatant was collected. The polyplexes were stained by adding 1 drop 

of clear 1% (w/v) uranyl acetate solution for 30 seconds. The excess liquid was also 

removed by Whatman® filter paper and air dried. TEM images were taken by JEOL JEM-

1230 transmission electron microscope provided with Gatan UltraScan 1000 2k x 2k 

CCD camera. TEM beam current was used at an accelerating voltage of 120 kV. The 

TEM images were processed with ImageJ (Image Processing and Analysis in Java, 

Version 1.46b, http://rsbweb.nih.goc/ij/). 

Investigation of the ability of chitosan to complex with 

pDNA 

CpG(+) plasmid and the CSpp(CpG(+)) at N/P ratios of 1, 5, 10, 20, 60 and 100 

were mixed with 2x BlueJuice™ gel loading buffer (Invitrogen™, Grand Island, NY). The 
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final solutions/suspensions which contained 1 µg pDNA were loaded into the wells of a 

1.0% (w/v) agarose gel containing 0.5 µg/ml of ethidium bromide in 1X Tris-acetate-

EDTA (TAE) buffer. Gels were exposed to a constant current of 100 mAmp for 2 hours. 

DNA migration was visualized with a UV transilluminator (Spectroline, Westbury, NY). 

TrackItTM (1 Kb plus DNA ladder, Invitrogen™, Grand Island, NY) was used as a DNA 

ladder in this experiment. 

Evaluating the cytotoxicity of CSpp in vitro 

Cell lines and cell culture 

Adenocarcinomic human alveolar basal epithelial cells (A549) were a generous 

gift from Peter S. Thorne’s laboratory, University of Iowa. A549 cells were maintained in 

RPMI-1640 medium (Gibco®, Life technologies, Grand Island, NY). Human embryonic 

kidney 293 (HEK293) cells were purchased from the American Type Culture Collection 

(ATCC, Rockville, MD) and were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) (Gibco®, Life technologies, Grand Island, NY). All of the media were 

supplemented with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 10 

mM HEPES (Gibco®, Life technologies, Grand Island, NY), 50 µg/ml gentamycin sulfate 

(Cellgro, Manassas, VA) , 1 mM sodium pyruvate (Gibco®, Life technologies, Grand 

Island, NY) and 1mM Glutamax™ (Gibco®, Life technologies, Grand Island, NY). Cells 

were incubated at 37°C and 5% CO2. Cells were passaged before reaching 100% 

confluence. 

Evaluation of the cytotoxicity of CSpp using the MTS assay 

Twenty-four hours prior to treatment, A549 or HEK293 cells were seeded (1 x 104 

cells/well in 200 µl of complete media) into a 96-well flat bottom polystyrene tissue 

culture plate (Celltreat® Tissue Culture Treated, Flat bottom, Celltreat Scientific 

Products, Shirley, MA). Treatments (CSpp at various N/P ratios, PEIpp and pDNA alone) 
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were added in a volume of 20 µl/well (every treatment contained pDNA equivalent to 1 

µg), along with 80 µl of serum-free medium. Without aspiration, 100 μl of fresh, complete 

medium was added after 4 hours of incubation.  After 48 hours, the treatment media was 

aspirated and replaced with 100 µl of fresh, complete media and 20 µl of the MTS 

tetrazolium compound or CellTiter 96® Aqueous One Solution reagent (Promega 

Corporation, Madison, WI). The plate was incubated at 37°C at 5% CO2, incubated for 1 

- 4 hours, and then the absorbance was recorded at 490 nm using a Spectra Max® plus 

384 Microplate Spectrophotometer (Molecular Devices, Sunnyvale, CA). Percent relative 

cell viability values are expressed as the percentage of UV absorbance from wells 

containing treated cells compared to the control wells containing live cells treated with 

phosphate buffered saline (PBS) and multiplying the resultant value by a factor of 100. 

Background absorbance at 490 nm was corrected by subtracting the absorbance 

recorded for blank control wells, which contained only 100 µl of media and 20 µl of the 

MTS tetrazolium compound, from the absorbance obtained from the wells of interest.  

To investigate the relationship between dose-, time- and cytotoxicity, A549 and 

HEK293 cells were seeded at the same manner as the above method. Cells were 

treated with CSpp(CpG(+)) in a volume between 20 – 120 µl per well (each treatment 

contains pDNA in the range from 1 – 36 µg per well), along with 80 µl of serum-free 

medium. An N/P ratio in all treatments is equal to 10. If treatments were exposed to cells 

longer than 4 hours, 100 µl of fresh complete medium was added to the well. Cells were 

exposed to treatments for 4, 12, 24 and 48 hours. MTS assay were conducted at the end 

according to the previous experiment. 

Evaluation of the cytotoxicity of CSpp (apoptosis) using 

Caspase-3/7 assay 

This experiment was conducted in parallel with the MTS assays. Twenty-four 

hours prior to treatment, HEK293 cells were seeded (1 x 104 cells/well in 200 µl of 
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complete media) into a 96-well plate. Treatments (CSpp and PEIpp at N/P ratio 10) were 

added along with serum-free medium. Without aspiration, 100 μl of fresh complete 

medium was added after 4 hours of incubation.  Caspase-3-7 activity was measured 

according to the manufacturer’s protocol (Promega Corporation). After 24 hours, the 

treatment was aspirated and replaced with 100 µl of fresh complete media and 100 µl of 

the Apo-ONE® Caspase-3/7 reagent (Promega Corporation). Apo-ONE® Caspase-3/7 

reagent was prepared by diluting caspase substrate (100x) with Apo-ONE® 

homogeneous Caspase-3-7 buffer. The reagent was mixed with the media using a plate 

shaker for 30 seconds. The plate was incubated at room temperature for 4.5 hours and 

then the fluorescence in each well was recorded (ex/em = 485/530 nm) using a Spectra 

Max® plus 384 Microplate Spectrophotometer (Molecular Devices, Sunnyvale, CA). The 

blank value was the fluorescence obtained from wells that comprised media (100 µl) and 

Apo-ONE® Caspase-3/7 reagent (100 µl). Caspase-3/7 activity was determined from the 

fluorescence obtained from the assay wells minus the fluorescence of blank wells. 

Evaluation of the intracellular superoxide levels when cells 

were treated with CSpp 

A549 or HEK293 cells were plated in 60 mm2 dishes (2 x 104 cells per dish in 4 

ml of complete media) 24 hours prior to treatments. Cells were treated with different 

CSpp and PEIpp containing N/P 10 (20 µg of pDNA in 400 µl of CSpp suspension), 

chitosan solution, PEI solution or naked pDNA. The amount of chitosan and PEI added 

were adjusted to the amount used in CSpp and PEIpp groups. After 48 hours, cells were 

rinsed by PBS and harvested by trypsinizing the cultures. Cells were subsequently 

washed with 3 ml of PBS containing 5 mM pyruvate and collected by centrifuge at 230 x 

g for 5 minutes. Cells were incubated in a solution of PBS containing 5 mM pyruvate with 

10 uM dihydroethidium (DHE) for 40 minutes at 37°C and 5% CO2. The control tubes 

received 0.1% dimethyl sulfoxide (DMSO) at equal volume used in samples tubes and 
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the electron transport chain blocker Antimycin A (Ant A) was used as a positive control. 

Following the incubation, the cells were filtered through 35 micron mesh, transferred to 

flow tubes and placed on ice to stop the reaction. Samples were analyzed using a 

FACScan flow cytometer (Becton Dickinson Immunocytometry Systems, Inc., San Jose, 

CA) using an excitation wavelength of 488 nm and emission of 585 nm. The mean 

fluorescence intensity (MFI) of 10,000 cells was recorded for each sample and the mean 

of samples was calculated for each treatment group. The background fluorescence was 

subtracted from each sample to generate the net MFI. Each sample was normalized to 

the control group to yield the normalized MFI (NMFI). 

Evaluating transfection efficiencies of CSpp in vitro 

Cells (HEK293 and A549 cell lines) were seeded (8 x 104 cells/well in 500 µl of 

complete media) into a 24-well plate. After 24 hours, 500 µl of serum-free medium and 

100 µL of the treatments (pDNA solution, the CSpp and PEIpp) were added. Each 

treatment contained 1 µg or 5 µg of pDNA. Additional complete medium (500 µl) was 

added at 4 hours after the treatment. The medium was then replenished every 24 hours. 

At 48 hours, the cells were treated with 200 µl of Reporter Lysis Buffer (Promega 

Corporation, Madison, WI) followed by two freeze-thaw cycles (frozen at -80C for 20 

minutes then thawed at room temperature for 30 minutes). Cell suspensions were then 

transferred to 1.5-ml microcentrifuge tubes and centrifuged at 16100 x g for 5 minutes 

using Eppendrof Microcentrifuge Model 5415 D (Eppendorf, Hauppauge, NY), after 

which the supernatants were collected.  Luciferase expression was measured using a 

Luciferase Assay System according to the company protocol (Promega Corporation). 

Aliquots of supernatant (20 µl) were added to 100 µl of the luciferase assay reagent, 

vortexed briefly and luciferase activity was measured for 10 seconds using a Lumat LB 

9507 luminometer (EG&G Berthold, Wildbad, Germany). Background was corrected by 

substracting the value obtained from each sample with an average of the values 
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collected from samples that contained only 20 µl of Reporter Lysis Buffer and 100 µl of 

the luciferase assay reagent. 

The remaining supernatant was analyzed for total protein concentration using a 

Micro BCA™ Protein Assay Kit (Pierce Biotechnology Inc., Rockford, IL). Bovine serum 

albumin (BSA) (2 mg/ml, Pierce Biotechnology Inc., Rockford, IL) was used to create a 

standard curve (Figure 2-3A). BSA concentrations in the range between 1.95 – 62.5 

µg/ml were within the linear response region (Figure 2-3B). The results are expressed as 

relative light units (RLU) per mg of total protein. 

Evaluating transgene expression and inflammatory 

response induced by CSpp in mouse lungs 

Animals 

Mice (C57Bl/6, males, 6 weeks old) were purchased from The Jackson 

Laboratory (Bar Harbor, ME). Mice were kept in a vivarium in polypropylene, fiber-

covered cages in HEPA-filtered Thoren caging units (Hazelton, PA, USA) in the 

Pulmonary Toxicology Facility at the University of Iowa. Animals were acclimatized in the 

vivarium for 10 days prior to the instillation exposures. Food (sterile Teklad 5% stock 

diet, Harlan, Madison, WI) and water (via an automated watering system) was provided 

ad libitum and a 12-hour light-dark cycle was maintained in the animal room. All animal 

protocols used in these studies were approved by the Institutional Animal Care and Use 

Committee and complied with NIH Guidelines. 

Nasal instillation 

For the first set of experiments, mice were exposed to CSpp by nasal instillation 

(dose 12.5 µg pDNA/50 µl) only once. The instilled volume of 50 µl per application was 

chosen because it is an optimum volume which gives high drug distribution in lungs 132. 

The mice were anesthetized with isoflurane (3%) by inhalation using a precision Fortec 
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vaporizer (Cyprane, Keighley, UK) prior to instillation. There were two control groups in 

these studies: 1) mice without exposure (control); and 2) mice exposed to CpG(+) alone 

(CpG(+)). Mice were euthanized 24 hours after nasal instillation and bronchoalveolar 

lavage (BAL) fluid was collected and lungs were harvested as previously described 133. 

This time point has previously been shown to be the time that mice have highest 

cytokine levels during acute inflammation responses 134. Mice lungs were used to 

measure the level of transgene expression. BAL fluid was analyzed to determine the 

number of macrophages, neutrophils, lymphocytes and eosinophils as well as to 

determine cytokine concentrations. 

For the second set of experiments, mice were treated in the same manner as the 

first set of experiments except they were exposed to CSpp by nasal instillation (dose 

12.5 µg pDNA/50 µl) twice with a 1 hour interval between each dose. There were three 

control groups in these studies: 1) mice without exposure (control); 2) mice exposed to 

chitosan solution (CS) at the concentration used to prepared CSpp; and 3) mice 

exposed to CpG(+) alone (CpG(+)). Mice body weights were determined before and 24 

hours after nasal instillation. Mice lungs were used to measure the level of transgene 

expression. BAL fluid was analyzed to determine the number of macrophages, 

neutrophils, lymphocytes and eosinophils, total protein concentrations, lactate 

dehydrogenase enzyme (LDH) activity and cytokine concentrations. 

Measuring transgene expression in mouse lungs after 

nasal instillation of CSpp 

The method used for tissue preparation was adapted from Mohammadi et al. 100, 

Manthorpe et al. 135 and Stammberger et al. 136. Lungs from euthanized mice were 

washed with ice-cold PBS, weighed and homogenized using a Tissue Tearor (Biospec 

Products, Inc., Bartlesville, OK) in ice-cold Reporter Lysis Buffer (4 μl/mg of lung tissue) 

for 1 minute. Lysates were then passed through three freeze-thaw cycles (frozen at -
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80C for 20 minutes and thawed in a 37C water bath for 5 minutes). Lysates were then 

centrifuged at 16100 x g for 5 minutes using Eppendrof Microcentrifuge Model 5415 D 

(Eppendorf, Hauppauge, NY), after which the supernatants were collected. Supernatants 

were analyzed for luciferase expression in the same manner as described in a previous 

section, “Evaluating transfection efficiencies of CSpp in vitro”. 

Evaluating pulmonary inflammatory responses 

The lungs from each euthanized mouse (n = 6) were lavaged via the cannulated 

trachea three times, in situ, with approximately 1 ml/wash of sterile saline (0.9% (w/v) 

sodium chloride solution). Cells were collected from BAL fluid by centrifugation at 800 x 

g for 5 minutes at 4˚C. The cell pellets were resuspended in Hank’s balanced salt 

solution, and the total white cells were counted using a hemocytometer. The remaining 

supernatants were stored at -80°C and used for measuring total protein, LDH activity 

and inflammatory cytokine/chemokine concentrations. Different cell types were counted 

after the BAL cells were placed on microscope slides, spun using Cytospin 4 (Thermo 

Shandon, Thermo Scientific, Waltham, MA) at 800 x g for 3 minutes, and stained using a 

HEMA 3® stain set (Fisher Scientific Company LLC, Midland, MI). A total of 400 cells 

(macrophages, neutrophils, lymphocytes and eosinophils) per mouse were counted. 

The concentration of total protein in BAL fluid supernatants was determined 

using a Bradford protein assay (Bio-Rad Laboratories, Inc., Hercules, CA). The activity 

of lactate dehydrogenase enzyme (LDH) in BAL fluid supernatants was measured using 

a commercially available Cytotoxicity Detection Kit (LDH) (Roche Diagnostics, 

Mannheim, Germany).  Inflammatory cytokine/chemokine (tumor necrosis factor [TNF]-α, 

interferon [IFN]-γ, interleukin [IL]-6, IL-12 (p40), keratinocyte-derived cytokine [KC], and 

macrophage inflammatory protein [MIP]-1α) levels in the BAL fluid were determined 

using a multiplexed fluorescent bead-based immunoassay (Bio-Rad Laboratories, Inc.). 

Values for each cytokine falling below the lower limit of detection (LLOD) or the nonzero 
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values, which cannot be measured but are known to be below the detection limit, were 

imputed with L / √2 , where L was the limit of detection 137.  

Statistical analysis 

Data are expressed as mean ± SD. Statistical significance was determined using 

a one-way analysis of variance (ANOVA) with Bonferroni’s Multiple Comparison Test 

compared to the control or a two-way analysis of variance (ANOVA) with Bonferroni’s 

Multiple Comparison Test compared to the control. A p-value less than 0.05 was 

considered significant. Statistical analyses were performed using GraphPad Prism 

version 5.02 and 6.05 for Windows (Graphpad Software, Inc., San Diego, CA). 

Results and discussions 

Chitosan purification  

Chitosan used in this study was derived from crustacean shells which usually 

have high contaminants from bacterial organisms 138. Most chitosan products in the 

market have been used in food industry and water treatment where high purity grades 

are not necessary. However, when using chitosan for biomedical applications, such as in 

gene delivery, high purity is critical. According to recent studies from our laboratory, 

further treatments of chitosan by deproteinization (SDS) and demetallization (EDTA) 

agents, results in reduced protein contamination, or “purified chitosan” 127. However, 

endotoxin content has never been reported in chitosan that was purified by this method. 

Endotoxins or lipopolysaccharides (LPS) are a major component of Gram-negative 

bacteria outer membranes. Since endotoxin contamination can induce lung inflammation 

and cause lung injury 139, it was crucial in this study to use endotoxin-free chitosan to 

prohibit any inflammatory responses caused by endotoxin in animal lungs. 

Lyophilized purified chitosan was tested for endotoxin content using an LAL 

assay. Purified chitosan (1% w/v) in 1% (v/v) acetic acid tested negative (<LLOD, 0.024 
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endotoxin unit/ml (EU/ml)) for endotoxin while 1% (w/v) unpurified chitosan in 1% (v/v) 

acetic acid contained endotoxin 89.1 EU/ml (Table 2-1). The result obtained from 

insoluble purified chitosan (chitosan dispersed in LAL water) was consistent with the 

result obtained from soluble chitosan in acetic acid which was negative for endotoxin.  It 

is possible that endotoxin was dissociated by SDS into small units 140, 141 and was 

removed by ultrafiltration (10 MWCO) 142. 

Characterization of CSpp and PEIpp 

CSpp sizes were reported as Z-average mean values which is the most stable 

parameter generated by the Zetasizer nano ZS 143. Sizes of the CSpp prepared for the in 

vitro study (2.5 µg of pDNA/50 µl) were unimodal (Figure 2-4) and ranged between 200 

to 400 nm in diameter for all N/P ratios tested. The sizes of the polyplexes at N/P ratios 

ranging from 1 to 20 were similar (~230 nm) for both CSpp(CpG(-)) (Figure 2-6A) and 

CSpp(CpG(+)) (Figure 2-6B) while polyplexes progressively increased in size at N/P 60 

(250 - 300 nm) and N/P 100 (300 – 350 nm). In all samples tested, the PdI value was 

lower than 0.7, which indicated the suitability of measuring samples by the DLS 

technique 143. From the low PdI value, both types of polyplexes had narrow size 

distributions (Figure 2-6C and Figure 2-6D). At N/P 1, because of an equally positive and 

negative charge, chitosan may not fully complex and condense pDNA. Some pDNA may 

be exposed to the surface of the polyplexes. Thus, the zeta potential values of both 

types of polyplex were negative (approximate -25 mV).  However, when the 

concentration of chitosan increased (at N/P ratios of 5 to 100), all polyplexes tested were 

positively charged (25 – 35 mV) (Figure 2-6E and Figure 2-6F). 

Since PEIpp(CpG(-)) and PEIpp(CpG(+)) will be used further in cytotoxicity and 

transfection experiments, size and zeta potentials of PEIpp prepared at the same pDNA 

concentration (2.5 µg of pDNA/50 µl) at N/P 10 were measured. PEIpp had small 

diameters of approximately 100 nm (Figure 2-7A). Zeta potentials of PEIpp(CpG(-)) and 
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PEIpp(CpG(+)) were equal to 45 mV and 42 mV, respectively (Figure 2- 7B). Zeta 

potentials obtained from PEIpp were slightly higher than zeta potentials obtained from 

CSpp (Figure 2-7E and Figure 2-7F).  

Abbas et al. 127 showed that the particle size of CSpp increased when pDNA 

concentrations were increased above 2.5 μg/50 μl.  In contrast, the pDNA 

concentrations below 2.5 µg of pDNA/50 µl (or 0.05 mg/ml) have no effect on the size of 

CSpp 127. Hence, for the in vitro experiments, polyplexes were used at a concentration of 

2.5 µg of pDNA/50 µl. However, for the in vivo experiments, the concentration was 

increased to 12.5 µg of pDNA/50 µl in order to overcome the limitation of small delivery 

volumes in mice. This increase in pDNA concentration resulted in an increase in 

polyplex size as well as a small amount of aggregation of the polyplexes and was 

consistent with findings from other groups 144, 145. A bimodal distribution (Figure 2-5) was 

observed in particle size measurements for CSpp at N/P 10 with a pDNA concentration 

of 12.5 µg/50 µl (523.0 ± 3.8 nm, 94.6 ± 2.3 % by volume and 4888.0 ± 355.3 nm, 5.4 ± 

2.3 % by volume).  

Macroscopic images of CSpp 

At a pDNA concentration of 12.5 µg/50 µl, although the particle size increased 

and some aggregations can be detected when measured by Zetasizer Nano ZS, this 

aggregation cannot be seen via Stereoscope (Figure 2-8A and Figure 2-8B). At this 

concentration, CSpp(CpG(-)) and CSpp(CpG(+)) could be administered to the animals 

via nasal instillation with pipettes. Concentrations of greater than 12.5 ug/50 µl pDNA; 

which are 25.0 µg/50 µl (Figure 2-8C and Figure 2-8D) and 50.0 µg/50 µl (Figure 2-8E 

and Figure 2-8F) resulted in substantial precipitation of the polyplexes rendering them 

unsuitable for pulmonary delivery. 
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Microscopic images of CSpp 

 CSpp morphology was studied by staining with uranyl acetate and observed 

under TEM. Figure 2-9 shows CSpp(CpG(+)) at a N/P ratio of 10 and is indicated by red 

arrows. 

Ability of chitosan to complex with pDNA 

Plasmid DNA complexed with chitosan did not migrate into an agarose gel (1% 

(w/v)) when an electric field was applied. The pDNA from CSpp remained in the loading 

wells at N/P ratios > 1 (Figure 2-10). This finding is consistent with the zeta potential 

data showing a negative charge for CSpp N/P = 1 and a positive charge for CSpp N/P ≥ 

5 suggesting that at N/P ratios ≥ 5 chitosan binds to all free pDNA molecules, creating 

polyplexes. 

These results may vary depending on the characteristics of the chitosan, since 

the binding strength between chitosan and DNA has been shown to be affected by the 

degree of deacetylation and the molecular weight of the chitosan. Chitosan with a high 

molecular weight and high degree of deacetylation binds to DNA more strongly than 

chitosan with a relatively low molecular weight and low degree of deacetylation 92, 105. 

Evaluation of in vitro cytotoxicity 

Cytotoxicity of CSpp 

Cell viability assays involving A549, a human lung epithelial cell line, and 

HEK293, a human embryonic kidney cell line, commonly used in transfection studies, 

were used to test CSpp at N/P ratios of 1 - 100 using both types of pDNA (CpG(-) or 

CpG(+)). All treatments contained pDNA equal to 1 µg per well and the treatments were 

exposed to cells for 48 hours. All formulations of CSpp tested resulted in at least 85 – 

90% cell viability of A549 (Figure 2-11A and 11B) and HEK293 (Figure 2-11C and 11D), 

with no significant differences when compared to PBS-treated control cells in both CSpp 
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prepared using CpG(-) and CpG(+). In contrast, PEIpp(CpG(-)) and PEIpp(CpG(+)) at 

N/P 10 showed significantly lower cell viabilities in both A549 (Figure 2-11A and 11B) 

and HEK293 (Figure 2-11C and 11D) (25%, p-value < 0.001).  

Since in vivo experiments require high doses of CSpp (12.5 µg/50 µl, once and 

twice administrations), it was necessary to investigate whether or not CSpp at these high 

doses would result in toxicity. A549 cells that were treated with CSpp(CpG(+)) at the 

pDNA amount between 1 – 36 µg per well for 48 hours (Figure 2-12A) showed no 

significant differences in cell viability compared to PBS-treated control cells. When 

HEK293 cells were used, some of the treatment groups showed statistically significant 

differences in cell viability when compared to the control group (Figure 2-12B). However, 

all groups tested showed relative cell viabilities higher than 70% after 48 hours 

exposure. 

To study the relationship between time and cytotoxicity, HEK293 cells were 

treated with CSpp(CpG(+)) at pDNA amounts of 1 and 25 µg per well. PEIpp(CpG(+)) at 

pDNA amount of 1 µg per well were used as a positive control. Only cells that were 

treated with PEIpp(CpG(+)) for 12, 24 and 48 hours showed significantly reduction in cell 

viability (p-value < 0.001) when compared to PBS-treated group in a time-dependent 

manner. CSpp(CpG(+)) showed no significance difference in viability when compared to 

the control (PBS-treated) group even at high concentrations of pDNA (25 µg/well) 

(Figure 2-13).  

Evaluation of the cytotoxicity of CSpp (apoptosis) using 

Caspase-3/7 assay 

Caspases, a family of cysteine proteases, are involved in promoting apoptosis 

(programmed cell death). Among them, caspase-3 and caspase-7 are considered 

downstream effector caspases that lead to apoptosis. In this assay, non-fluorescent 

caspase-3/7 substrate (rhodamine 110, bis-(N-CBZ-L-aspartyl-L-glutamyl-L-valyl-L-



www.manaraa.com

29 
 

aspartic acid amide; Z-DEVD-R110) was used to react with caspase-3/7. The 

fluorescent product obtained (rhodamine) after enzyme cleavage (removing DEVD 

peptides by caspase-3/7) was measured 146. HEK293 cells were exposed to 

CSpp(CpG(+)) and PEIpp(CpG(+)) for 28.5 hours. It appeared that only cells that were 

incubated with PEIpp(CpG(+)) at a pDNA amount of 1 µg/well showed high fluorescence 

levels indicating high caspase-3/7 activity. Caspase-3/7 activity in cells that were 

incubated with CSpp(CpG(+)) at pDNA amounts of 1 µg and 30 µg/well were not 

different from the control or untreated group (Figure 2-14). From this result, 

PEIpp(CpG(+)) at a pDNA amount of 1 µg/well can induce apoptosis in HEK293 cells.  

Measurement of reactive oxygen species (ROS) 

generation by cells treated with CSpp 

In order to determine if treatment of cells with the polyplexes affects intracellular 

reactive oxygen species (ROS) levels, superoxide levels were estimated using the 

oxidation sensitive fluorescent dye, dihydroethidium (DHE). DHE can be converted to 2-

hydroxyethidium by superoxide, which then intercalates with nuclear DNA and becomes 

fluorescent (red) which can be detected by flow cytometry 147.   

The results indicated that A549 cells treated with CSpp, PEIpp, chitosan solution 

(CS) or PEI solution showed significant increases (1.5 – 2.0–fold) in DHE oxidation 

relative to the control group (p-value < 0.001 and < 0.01) (Figure 2-15A). Treatment of 

HEK293 cells with the CSpp or the chitosan solution did not significantly affect the DHE 

oxidation levels compared to the control group. However, treatment with PEIpp, CpG(+) 

alone or PEI solution showed significant increases (1.5 – 3.0 –fold) in DHE oxidation (p-

value < 0.001 and < 0.01) (Figure 2-15B). Both A549 and HEK293 cells treated with 

CSpp containing either CpG(+) or CpG(-) had lower DHE oxidation when compared with 

cells treated with PEIpp and PEI solution.  
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The results from both cell lines showed CSpp had a negligible impact on cell 

viability.  CSpp did not increase caspase-3/7 activity when compared to untreated cells 

and cells treated with CSpp trended toward lower DHE oxidation when compared to cells 

treated with PEIpp.  

Malich et al. studied the sensitivity and specificity of the MTS assay with human 

cell lines. They found that results from the in vitro cytotoxicity assay did not necessarily 

correlate well with in vivo results 148. The in vitro models might not be capable of 

elucidating the inflammatory potency. Thus, the toxicity, oxidative stress levels and 

inflammatory response in an animal model needed to be assessed before CSpp delivery 

systems can be used for clinical applications. 

In vitro transfection efficiencies of CSpp: presence versus 

absence of CpG sequences 

The effect of the presence of CpG sequences within CSpp on transfection 

efficiencies was examined initially in vitro using A549 and HEK293 cell lines.  A 

preliminary experiment in A549 cells was conducted to find an optimum pDNA amount to 

use per well to achieve high transfection efficiency as determined by luciferase 

expression. As shown in Figure 2-16, cells that were treated with CSpp(CpG(-)) at 

different N/P ratios showed the same trend in luciferase expression. N/P ratios of 10 and 

20 yielded the highest luciferase expression among the four N/P ratios tested. Increasing 

the pDNA amount from 1 µg per well to 5 µg per well resulted in an increase in luciferase 

expression for all N/P ratios tested. Thus, from this experiment, 5 µg of pDNA was 

chosen for comparing transfection efficiencies in two types of cell lines, A549 and 

HEK293, when treated independently with two types of CSpp (CSpp(CpG(-)) and 

CSpp(CpG(+)) at six different N/P ratios (1, 5, 10, 20, 60 and 100). 

The transfection efficiency of CSpp(CpG(-)) at a N/P ratio of 10 and 20 was 

significantly higher than the control groups for A549 as shown in Figure 2-17A. In 
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contrast, relatively low transgene expression was observed when CSpp(CpG(+)) were 

used to transfect A549 cells (Figure 2-17B). In the HEK293 cell line, the luciferase 

expression pattern was similar for both CSpp(CpG(-)) and CSpp(CpG(+)) (Figure 2-17C 

and Figure 2-17D). It has been reported that A549 cells express the Toll-like receptor 9 

(TLR-9), which recognizes unmethylated CpG sequences in pDNA 149 and it has also 

been reported that CpG-oligodeoxynucleotides can suppress A549 cell proliferation via 

TLR-9 signaling 150. We speculate that this may have had a detrimental effect on 

CSpp(CpG(+))-mediated transfection of A549 cells . Finally, A549 cells showed higher 

luciferase expression than HEK293 cells when treated with CSpp(CpG(-)). Mao et al., in 

studies investigating transfection efficiencies of CSpp in cell lines of different lineages 

reported differences in luciferase expression levels indicating that the transfection 

efficiency when using CSpp may be dependent on cell type 130. 

In vivo transfection efficiencies in mouse lungs: effect of 

presence versus absence of CpG sequences in CSpp 

When mice were administered three different treatments; CSpp(CpG(-)), 

CSpp(CpG(+))at a N/P ratio of 10 (12.5 µg of pDNA/50 µl) and CpG(+) at the same 

concentration used to prepare CSpp, luciferase expression in all groups tested was low 

(Figure 2-18). There was no significant difference in luciferase expression in any of the 

groups tested. Among these groups, the highest luciferase expression was obtained 

from mice lungs that were treated with soluble CpG(+) (mean: 4296 RLU/mg of total 

protein, median: 867). CSpp(CpG(-)) caused luciferase expression (mean: 2053 RLU/mg 

of total protein, median: 221) at levels higher than mice treated with CSpp(CpG(+)) 

(mean: 196 RLU/mg of total protein, median: 191) (Figure 2-18). 

When administration dose(s) were increased from once (12.5 µg of pDNA/50 µl) 

to twice, the luciferase expression values in mice lungs that were treated with 

CSpp(CpG(-)) greatly increased (11 times higher than single administration) (Figure 2-
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22). The supernatant obtained from homogenized lungs of mice treated with 

CSpp(CpG(-)) (at an N/P ratio of 10) demonstrated significantly (p < 0.01) higher 

luciferase expression (mean: 23846 RLU/mg of total protein, median: 23043) than mice 

treated with CSpp(CpG(+)) (mean: 1969 RLU/mg of total protein, median: 777) (Figure 

2-22). In addition, only the group in which mice were treated with CSpp(CpG(-)) 

expressed significantly higher luciferase than the controls (p < 0.01). These results are 

consistent with our in vitro data using A549 cells. A possible explanation for our in vivo 

transgene expression results is that CpG sequences stimulate inflammatory responses 

that deleteriously affect transfection. We subsequently performed experiments to 

investigate this possibility. 

Inflammatory responses measured in BAL fluids 

The inflammatory response to CSpp was investigated by harvesting and 

analyzing BAL fluids from variously treated mice. Acute inflammatory responses were 

assessed by enumeration of white blood cell types (macrophages, neutrophils, 

lymphocytes and eosinophils) 24 hours subsequent to nasal instillation of CSpp 

formulations. In the first in vivo experiment (single dose administration), CSpp(CpG(-)) 

caused an insignificant 4-fold increase in the total number of white blood cells in the BAL 

fluid compared to the control treatment, while CSpp(CpG(+)) caused a 2-fold increase 

over controls (Figure 2-19A).  The majority of white blood cells found in BAL fluids from 

mice that were treated with CSpp(CpG(-)) and CSpp(CpG(+)) were macrophages and 

neutrophils which indicates a classical inflammatory response. Only small numbers of 

lymphocytes were detected in all groups and there were no eosinophils detected in any 

of the samples (Figure 2-19B). Six different types of cytokines/chemokines in BAL fluids 

(TNF-α (Figure 2-19A), IL-6 (Figure 2-19B), IL-12 (Figure 2-19C), KC (Figure 2-19D), 

MIP-1α (Figure 2-19E) and INF-α) were measured. All groups showed low cytokine 

concentrations and the cytokine levels were not significantly different from the control 
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group. The levels of INF-α were below the lower limit of detection (0.95 pg/ml) in all 

samples analyzed (data not shown). Mouse body weights were recorded. There was no 

significant difference between body weight before, and 24 hours after, administration of 

complexes or controls in all groups tested (Figure 2-21). 

In the second in vivo experiment (double dose administration), the number of 

white blood cells obtained from each treatment group increased. CSpp(CpG(-)) caused a 

significant 9-fold increase in the total number of white blood cells in the BAL fluid 

compared to the control treatment, while CSpp(CpG(+)) caused a 7-fold increase (albeit 

not statistically significant) over controls (Figure 2-23A).  The majority of these infiltrating 

white cells proved to be neutrophils (Figure 2-23B). Concentrations of total protein in 

BAL fluid (an indicator of the increased permeability of the alveolar capillary membrane), 

was significantly higher (compared to control) in mice treated with CSpp(CpG(+)). Total 

protein concentration was also enhanced (but not significantly) in mice receiving 

CSpp(CpG(-)) (Figure 2-24A).  Another parameter that was assessed was that of the 

activity of the cytoplasmic cellular enzyme, LDH. Activity of LDH, which denotes cell 

membrane damage, 151 was not significantly different in BAL fluid from mice treated with 

either CSpp(CpG(-)) or CSpp(CpG(+)) (Figure 2-24B). There were no statistically 

significant differences for both total protein levels and LDH activity between mice treated 

with CSpp(CpG(-)) and with CSpp(CpG(+)). However, LDH activities for both types of 

CSpp were higher than the control (p < 0.001). Finally, levels of cytokines (IL-6, IL-12, 

KC and MIP-1α) were consistently significantly higher in the BAL fluids from mice treated 

with CSpp(CpG(+)) compared to CSpp(CpG(-)) treated mice (Figure 2-25). Of particular 

distinction were IL-12 and KC levels. TNF-α levels were also higher in the mice receiving 

CSpp(CpG(+)), however, not significantly. These observed increases in inflammatory 

cytokines could be due to the presence of CpG since it is well established that triggering 

TLR-9 can result in a MyD88-dependent, NF-kB-mediated upregulation of inflammatory 

cytokines, including IL-12 152. We also tested for IFN-α, however, levels were below the 
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lowest limit of detection (0.95 pg/ml) in all samples analyzed (data not shown). Mice 

body weights were recorded. There was no significant difference between body weights 

before and 24 hours after administration in all group tested (Figure 2-26).  

The results gathered from the BAL fluids showed that both CSpp(CpG(-)) and 

CSpp(CpG(+)) induced inflammation, as determined by an increased influx of 

neutrophils as well as increases in total protein, LDH activity, and inflammatory 

cytokines. Mice treated with chitosan solution alone trended towards increased cytokine 

levels in their BAL fluid compared to untreated mice. These levels were further 

enhanced for all cytokines tested when chitosan was complexed with CpG(+) pDNA 

while CSpp(CpG(-)) treatment resulted in only marginally higher levels (TNF-α, IL-6, MP-

1α). Thus, in terms of cytokine levels, chitosan polyplexes made from plasmids devoid of 

CpG sequences induced lower inflammatory responses than polyplexes harboring 

plasmids that contained CpG sequences. 

In this study, there was a limitation regarding the use of CSpp.  These polyplexes 

can only be prepared at low pDNA concentrations (12.5 µg pDNA/50 µl or 250 µg 

pDNA/ml). While this has no impact on in vitro experiments, it was a major barrier in 

mice nasal instillation experiments. In the future, it may be possible to solve this problem 

by inline mixing the chitosan and pDNA solutions, followed by ultracentrifugation to 

concentrate the CSpp and adding sucrose, which acts as an aggregation inhibitor 145, 153. 

Conclusions 

The mixing of plasmid DNA with chitosan resulted in polyplexes with the potential 

for use in pulmonary gene delivery systems. In this study, we formulated CSpp with 2 

different plasmids (CpG(-) and CpG(+)) at N/P ratios of 1, 5, 10, 20, 60 and 100. CSpp 

showed higher transfection efficiency both in vitro (using A549 cells) and in vivo (mouse 

nasal instillation) when the dose was increased. However, the inflammatory response 

also increased. We found that CSpp(CpG(-)) generated superior transfection efficiencies 
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both in vitro and in vivo when compared with CSpp(CpG(+)). In addition, CSpp(CpG(-)) 

generated lower levels of proinflammatory cytokines (TNF-α, IL-6, IL-12, KC and MIP-

1α) in BAL fluids. Our findings suggest that N/P ratios, dose and plasmid CpG sequence 

content of CSpp are important factors to consider in achieving optimal gene expression 

with minimal toxicity and inflammation. 
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Table 2-1 Endotoxin test of purified and unpurified chitosan using a modification of the 
kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay. Limit of 
detection (LLOD) is equal to 0.024 EU/ml, (n = 1). 

Description Endotoxin concentration 

(EU/ml) 

Purified chitosan, 1% w/w in 1% v/v acetic acid 

Unpurified chitosan, 1% w/w in 1% v/v acetic acid 

Purified chitosan, 10 mg/ml in LAL water 

Unpurified chitosan, 10 mg/ml in LAL water 

< LLOD 

89.1 

< LLOD 

29.4 

 

 

Figure 2-1 Chitosan structure composed of randomly distributed β-(1-4)-linked D-
glucosamine (deacetylated unit, left) and N-acetyl-D-glucosamine (acetylated 
unit, right). 

 

Figure 2-2 Polyethylenimine (PEI) structure composed of a repeating unit of the amine 
group and two aliphatic hydrocarbons. 
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Figure 2-3 Absorbance obtained from bovine serum albumin standard using Micro 
BCA™ Protein Assay Kit (Pierce Biotechnology Inc., Rockford, IL) in the 
range of 0 – 200 µg/ml (A). Linear relationship between protein concentration 
and absorbance was in the range of 1.95 – 62.50 µg/ml, y = 0.008721x + 
0.02449 (B). Data are expressed as mean ± SD (n = 12-13). 
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Figure 2-4 Size distribution (diameter) of CSpp prepared for the in vitro study at the 
concentration of pDNA equal to 2.5 µg/50 µl measured by Zetasizer Nano 
ZS. Size distribution was expressed by volume. The distribution was 
unimodal. 

 

 

Figure 2-5 Size distribution (diameter) of CSpp prepared for the in vivo study at the 
concentration of pDNA equal to 12.5 µg/50 µl measured by Zetasizer Nano 
ZS. Size distribution was expressed by volume. The distribution was bimodal. 
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Figure 2-6 Particle sizes of CSpp(CpG(-)) (A) and CSpp(CpG(+)) (B), polydispersity 
index of CSpp(CpG(-)) (C) and CSpp(CpG(+)) (D) and zeta potentials of 
CSpp(CpG(-)) (E) and CSpp(CpG(+)) (F) at N/P ratios ranging from 1-100. 
Results obtained from CSpp(CpG(-)) and CSpp(CpG(+)) were shown in blue 
() and red (), respectively. In Figure A and B, green color represents the 
smallest (■) and largest (▲) particle size detected. All measurements were 
made in acetate buffer, pH 5.46, at 25C using a Zetasizer nano ZS. Data are 
expressed as mean ± SD (n = 3). 
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Figure 2-7 Particle sizes (A), and zeta potentials of PEIpp(CpG(-)) and PEIpp(CpG(+)) 
(B) at N/P 10 in water, at 25C and measured by Zetasizer nano ZS. Results 
obtained from PEIpp(CpG(-)) and PEIpp(CpG(+)) were shown in pink ().In 
Figure A, green color represents the smallest (■) and largest (▲) particle size 
detected. Data are expressed as mean ± SD (n = 3).  
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Figure 2-8 CSpp suspensions on slides at a pDNA concentration of 12.5 µg/50 µl (A & 
B) showing no precipitation. Aggregates of CSpp at pDNA concentrations of 
25.0 µg/50 µl (C & D) and 50.0 µg/50 µl (E & F) occurred when high pDNA 
concentrations were used to prepare the polyplexes. Scale bars in Figure 2-3 
(A, C & E) represent 400 µm. Scale bars in Figure 2-3 (B, D & F) represent 2 
mm. All images were taken using an Olympus Stereoscope DP (Olympus 
Scientific Solutions Americas Corp., Waltham, MA). 
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Figure 2-9 Transmission electron micrograph (TEM) of CSpp(CpG(+)) at N/P 10 
(indicated by arrows) that were taken via JEOL JEM-1230 transmission 
electron microscope. Scale bar represents 200 nm. 

 

Figure 2-10 Gel retardation assay in 1% agarose gel containing ethidium bromide: lane 
1, DNA ladder; lane 2, naked CpG(+) pDNA; lanes 3 – 8, CSpp(CpG(+) with 
N/P ratios of 1, 5, 10, 20, 60 and 100, respectively. 
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Figure 2-11 Cell viability of A549 (A, B) and HEK293 (C, D) cell lines treated with 
CSpp(CpG(-)) (A, C) and CSpp(CpG(+)) (B, D) were determined by MTS 
assays. Cells were treated with CSpp with N/P ratios ranging from 1 – 100. 
CpG(-) represents soluble CpG-free plasmid DNA while CpG(+) represents 
soluble CpG-containing plasmid DNA. PEIpp(CpG(-)) or PEIpp(CpG(+)) were 
PEI complexes with pDNA at N/P 10. Control = cells treated with PBS. The 
cells were seeded into a 96-well plate at a density of 1 x 104 cells per well 
one day prior to treatment and then exposed to the indicated treatments for 
48 hours. Each treatment contained 1 µg of pDNA per well. Data are 
expressed as mean ± SD (n=3). Percent relative cell viability was compared 
to cells treated with PBS. One-way ANOVA with Bonferroni’s multiple 
comparison test was used. *** p < 0.001. Results obtained from CSpp(CpG(-
)) and CSpp(CpG(+)) were shown in blue and pink, respectively. 
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Figure 2-12 Cell viability of A549 (A) and HEK293 (B) cell lines treated with 
CSpp(CpG(+)) were determined by MTS assays. In all groups, except control 
and CpG(+) 1 ug, cells were treated with CSpp(CpG(+)) at a N/P  ratio of 10 
at pDNA amounts of 1 – 36 µg per well. CpG(+) represents soluble CpG-
containing plasmid DNA. Control = cells treated with PBS. The cells were 
seeded into a 96-well plate at a density of 1 x 104 cells per well one day prior 
the experiment and exposed to the treatments for 48 hours. Data are 
expressed as mean ± SD (n=3). Percent relative cell viability was compared 
to cells treated with PBS. One-way ANOVA with Bonferroni’s multiple 
comparisons test compared to the control group was used. ** p < 0.01, * p < 
0.05.  
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Figure 2-13 Cell viabilities of HEK293 cell line treated with different amounts of 
CSpp(CpG(+)) were determined by MTS assays. Cells were treated with 
CSpp(CpG(+)) at pDNA amounts of 1 µg (represents in pink) and 5 µg 
(represents in red) per well. CpG(+) represents soluble CpG-containing 
plasmid DNA (shown in green). Control = cells treated with PBS (grey). 
PEIpp(CpG(+)) was used as a positive control with pDNA amount of 1 µg per 
well (purple). The cells were seeded into a 96-well plate at a density of 1 x 
104 cells per well one day prior to exposure to the treatments for 4, 12, 24 
and 48 hours. Data are expressed as mean ± SD (n=3). Percent relative cell 
viability was compared to cells treated with PBS. Two-way ANOVA with 
Bonferroni’s multiple comparisons test was used. Only PEIpp(CpG(+)) 
treated cells showed significantly reduced cell viabilities when compared to 
the control (p-value < 0.001) at 12, 24 and 48 hours of treatment. 
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Figure 2-14 Caspase-3/7 activity of HEK293 cell line treated with CSpp(CpG(+)) and 
PEIpp(CpG(+)) were determined by the Apo-ONE® Homogeneous Caspase-
3/7 Assay (see methods). Cells were treated with CSpp(CpG(+)) at pDNA 
amounts of 1 µg (shown in pink) and 30 µg (shown in red) per well. Control = 
cells treated with PBS (grey). PEIpp(CpG(+)) was used as a positive control 
with pDNA amount of 1 µg per well (purple). Data are expressed as mean (n 
= 2).  
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Figure 2-15 DHE oxidation levels indicated as normalized mean fluorescence intensity 
(Normalized MFI) showing estimates of relative intracellular superoxide levels 
in A549 cells (A) and HEK293 cells (B) treated with indicated polyplexes. 
Cells were treated with CSpp(CpG(-)) or CSpp(CpG(+)) at a N/P ratio of 10. 
CS is chitosan solution without pDNA. PEIpp(CpG(-)) or PEIpp(CpG(+)) were 
PEI complexes with pDNA at N/P 10. PEI = PEI solution without pDNA. 
Control = cells treated with PBS. Data are expressed as mean ± SD (n = 6 - 
9). One-way ANOVA with Bonferroni’s multiple comparisons test was used. 
*** p < 0.001, ** p < 0.01. Antimycin A which was used as a positive control 
for the experiment showed the normalized MFI equal to  a 4.7-fold increase in 
A549 cells and a 4.0-fold increase in HEK293 cells. 
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Figure 2-16 Transfection efficiency of A549 cells treated with CSpp(CpG(-)) at two 
different pDNA concentrations (1 µg (grey) and 5 µg (blue) pDNA per well). 
Varying N/P ratios are indicated. Control = cells treated with PBS. Data are 
expressed as mean ± SD (n = 3 - 7). Two-way ANOVA with Bonferroni’s 
multiple comparisons test was used. There was no significant difference 
when A549 cells treated with CSpp(CpG(-)) containing 1 µg pDNA/well and 5 
µg pDNA/well were compared. 
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Figure 2-17 Transfection efficiency of A549 (A, B) and HEK293 (C, D) cells treated with 
CSpp(CpG(-)) (A, C) or CSpp(CpG(+)) (B, D). Varying N/P ratios are 
indicated. Control = cells treated with PBS. Each treatment contained 5 μg 
pDNA/well. Data are expressed as mean ± SD (n = 3 - 7). One-way ANOVA 
with Bonferroni’s multiple comparisons test was used. * p < 0.05, ** p < 0.01, 
*** p < 0.001. PEIpp N/P 10 was used as a positive control for transfection 
(not shown in graphs). The luciferase expression of PEIpp-transfected A549 
cells was equal to 2.32  x 1010 ± 7.45 x 109 RLU/mg (total protein) (for 
PEIpp(CpG(-)) and 2.54 x 1010 ± 1.62 x 1010 RLU/mg (for PEIpp(CpG(+)). 
The luciferase expression in HEK293 cells was 5.38 x 1010 ± 3.96 x 109 
RLU/mg (for PEIpp(CpG(-)) and 4.23 x 1010 ± 2.92 x 1010 RLU/mg (for 
PEIpp(CpG(+)). 
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Figure 2-18 Luciferase expression in mouse lungs 24 hours after nasal instillation of 
indicated CSpp formulations. Control = no treatment (grey); CpG(+) = CpG(+) 
solution (green). Each treatment, aside from control, contained 12.5 μg of 
pDNA (12.5 μg pDNA/50 μl, 1x nasal instillation). One-way ANOVA with 
Bonferroni’s multiple comparisons test was used. Data are expressed as 
mean ± SD (n = 4-5). There was no significant difference in luciferase 
expression when each treatment was compared to the control or  
CSpp(CpG(-)) was compared to CSpp(CpG(+)). 
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Figure 2-19 BAL cell counts: total number of cells (A) and the number of macrophages, 
neutrophils and lymphocytes (B) in the BAL fluid of mice 24 hours after nasal 
instillation of indicated CSpp formulations. Control = no treatment (grey); 
CpG(+) = CpG(+) solution (green). Each treatment (aside from control) 
contained 12.5 μg of pDNA (12.5 μg pDNA/50 μl, 1x nasal instillation). Data 
are expressed as mean ± SD (n = 4-5). One-way ANOVA with Bonferroni’s 
multiple comparisons test was used. There was no significant difference in 
cell numbers when each treatment was compared to the control or 
CSpp(CpG(-)) was compared to CSpp(CpG(+)). 
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Figure 2-20 The concentration of proinflammatory cytokines/chemokines detected in 
BAL fluid of mice 24 hours subsequent to nasal instillation of indicated CSpp 
formulations. Control = no treatment (grey); CpG(+) = CpG(+) solution 
(green). LLOD for: TNF-α = 1.50 pg/ml (A), IL-6 = 0.96 pg/ml (B), IL-12 = 6.38 
pg/ml (C), KC = 4.95 pg/ml (D) and MIP-1α = 1.3 pg/ml (E). Each treatment 
aside from control contained12.5 µg of pDNA (12.5 µg pDNA/50 ul, 1x nasal 
instillation). Data are expressed as mean ± SD (n = 4-5). One-way ANOVA 
with Bonferroni’s multiple comparisons test was used. There was no 
significant difference in cytokine/chemokine levels when each treatment was 
compared to the control or CSpp(CpG(-)) was compared to CSpp(CpG(+)). 
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Figure 2-21 Mouse body weights before, and 24 hours after, exposure to CSpp(CpG(-)) 
and CSpp(CpG(+)). CpG(+) = naked CpG(+) pDNA solution. Each treatment 
aside from control and CS, contained 12.5 μg of pDNA (12.5 μg pDNA/50 μg, 
1x nasal instillations). Data are expressed as mean ± SD (n = 5). Two-way 
ANOVA with Bonferroni’s multiple comparisons test was used. There was no 
significant difference in mouse body weights before and after 24 hour 
exposures. 

 

Figure 2-22 Luciferase expression in mouse lungs after nasal instillation of indicated 
CSpp formulations. CS = chitosan solution (yellow); control = no treatment 
(grey); CpG(+) = CpG(+) solution (green). Each treatment, aside from control 
and CS, contained 25 μg of pDNA (12.5 μg pDNA/50 μl, 2x nasal 
instillations). One-way ANOVA with Bonferroni’s multiple comparisons test 
was used. Data are expressed as mean ± SD (n = 6). ** p < 0.01. 
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Figure 2-23 BAL cell counts: total number of cells (A) and the number of macrophages, 
neutrophils and lymphocytes (B) in the BAL fluid of mice after nasal 
instillation of indicated CSpp formulations. CS = chitosan solution (CS, 
yellow), CpG(+) = naked CpG(+) pDNA solution (green). Control = no 
treatment (grey). Each treatment (aside from control and CS) contained 25 
μg of pDNA (12.5 μg pDNA/50 μg, 2x nasal instillations). Data are expressed 
as mean ± SD (n = 6). One-way ANOVA with Bonferroni’s multiple 
comparisons test was used. ** p < 0.01. 
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Figure 2-24 Total protein and LDH activity levels: the concentration of total protein (A) 
and LDH activity (B) in BAL fluids of mice 24 hours subsequent to nasal 
instillation of indicated CSpp formulations. CS = chitosan solution (CS, 
yellow), CpG(+) = naked CpG(+) pDNA solution (green). Control = no 
treatment (grey). Each treatment aside from control and CS, contained 25 μg 
of pDNA (12.5 μg pDNA/50 μg, 2x nasal instillations). Data are expressed as 
mean ± SD (n = 6). One-way ANOVA with Bonferroni’s multiple comparisons 
test was used. *** p < 0.001, ** p < 0.01. 
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Figure 2-25 Concentrations of proinflammatory cytokines/chemokines detected in BAL 
fluid of mice 24 hours subsequent to nasal instillation of indicated CSpp 
formulations. CS = chitosan solution (yellow); control = untreated (grey); 
CpG(+) = naked CpG(+) pDNA solution (green). LLOD for: TNF-α = 1.50 
pg/ml (A), IL-6 = 0.96 pg/ml (B), IL-12 = 6.38 pg/ml (C), KC = 4.95 pg/ml (D) 
and MIP-1α = 1.3 pg/ml (E). Each treatment aside from control and CS 
contained 25 µg of pDNA (12.5 µg pDNA/50 ug, 2x nasal instillations). Data 
are expressed as mean ± SD (n = 6). One-way ANOVA with Bonferroni’s 
multiple comparisons test was used. *** p < 0.001, ** p < 0.01, * p < 0.05. 
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Figure 2-26 Mouse body weights before exposure and 24 hours after exposure to 
CSpp(CpG(-)) and CSpp(CpG(+)). CS = chitosan solution (CS), CpG(+) = 
naked CpG(+) pDNA solution. Control = no treatment. Each treatment aside 
from control and CS, contained 25 μg of pDNA (12.5 μg pDNA/50 μg, 2x 
nasal instillations). Data are expressed as mean ± SD (n = 6). Two-way 
ANOVA with Bonferroni’s multiple comparisons test was used. There was no 
significant difference in mouse body weights before, and 24 hours after, the 
exposures. 
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CHAPTER 3 POLY(GALACTARAMIDOAMINE) IS AN EFFICIENT 

CATIONIC POLYMERIC NON-VIRAL VECTOR WITH LOW 

CYTOTOXICITY FOR TRANSFECTING HUMAN EMBRYONIC KIDNEY 

(HEK293) AND MURINE MACROPHAGE (RAW64.7) CELLS 

Introduction 

Cationic polymers have shown strong potential for delivery of plasmid DNA 

(pDNA) to cells. Cationic polymers condense pDNA into polyplexes that can be 

efficiently internalized by cells as well as conferring protection against enzymatic 

degradation 131, 154-156. The most commonly used synthetic cationic polymer in non-viral 

gene delivery, poly(ethyleneimine) (PEI), promotes high transfection efficiencies of a 

broad range of cell lines, however, PEI is also associated with high toxicity 157, 158. 

Chitosan, a natural polysaccharide, is relatively non-toxic, however, when used in gene 

delivery it yields low transfection efficiencies when compared with PEI 64, 159-161. 

Poly(glycoamidoamine)s are a new class of cationic polymer that have shown promise 

as a transfection reagent with reduced toxicity relative to PEI 162, 163. The synthesis of 

poly(glycoamidoamine)s was based upon PEI and chitosan structures. The class of 

poly(glycoamidoamine) comprise 16 polyamides. Since it has been reported that high 

molecular weight cationic polymers exhibit high cytotoxicity, all 16 polymers in the 

poly(glycoamidoamine)s family were synthesized to have low molecular weight with 

similar degrees of polymerization (number average molecular weight/molecular weight of 

monomer unit) 77. Stable polyplexes can form when negatively charged pDNA is mixed 

with poly(glycoamidoamine)s, which possess positively charged amine groups 78. These 

polyamides have been tested for their DNA encapsulation ability, transfection efficiency 

(luciferase expression) and cytotoxicity. Among all 16 polyamides, a co-polymer of 

dimethyl-meso-galactarate and pentaethylenehexamine or poly(galactaramidoamine) 

(PGAA) that is synthesized by AABB step growth polymerization showed the best results  
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(Figure 3-1) 77, 164, 165. PGAA has a molecular weight equal to 4.6 kDa with the degree of 

polymerization equal to 11 – 14 77, 162. PGAA contains an oligoamine, providing a cationic 

charge to bind with pDNA electrostatically. PGAA also contains a carbohydrate moiety 

which reduces the positive charge density of amine groups in the polymer structure to be 

lower than PEI but still higher than chitosan, thereby decreasing the overall toxicity and 

increasing transfection efficiency 78. The overall strength of the electrostatic binding 

interaction is dependent on the ratio of the moles of amine groups to the moles of 

phosphate groups. This amine to phosphate ratio is referred to as the N/P ratio. Mixing 

of PGAA with pDNA results in PGAA polyplexes (PGAApp) which have shown robust 

transfection efficiencies in HeLa, BHK-21 and HepG2 cell lines. PGAA can form 

polyplexes with DNA at N/P ratios as low as 5 164, 165. One of the building blocks of PGAA 

is ethylenimine and as such, increasing the N/P ratio increases the ethylenimine content 

and would therefore be expected to increase toxicity. In general, optimal transgene 

expression is the result of a careful balance between the toxicity and transfection 

efficiency of the polymer. Optimizing the N/P ratio at which PGAApp cause maximum 

transfection is therefore necessary prior to using these polyplexes in subsequent 

studies. The optimal N/P ratio also has the potential to vary from one cell line to another 

131. 

A specific aim for this study was to evaluate PGAA as a transfection reagent. 

PGAA were used at N/P ratios of 40, 60 and 80 in human embryonic kidney cells 

(HEK293 cells). This is a rapidly dividing cell line which is highly susceptible to 

transfection 166. Given that transfection efficiencies can vary from cell line to cell line, we 

also evaluated transfection efficiency and cytotoxicity of PGAApp using RAW264.7 cells. 

This cell line, derived from mouse macrophages is notoriously difficult to transfect 167. 
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Materials and methods 

Plasmid amplification and purification 

Plasmid encoding for the firefly luciferase (VR1255, 6413 bps) was transformed 

into Escherichia coli (E. coli) DH5α-competent cells. The plasmid were amplified by first 

streaking E.coli contained plasmid of interested in Lennox L Agar (875 mg in 25 ml of 

nanopure water, RPI Research Products International Corp, Mt. Prospect, IL) and 

incubated overnight at 37C. A single colony was added into Lennox L Broth medium 

(Lennox L Broth powder 10 g in 0.5 L of nanopure water, RPI Research Products 

International Corp, Mt. Prospect, IL). Both Lennox L Agar and Lennox L Broth contain 

100 µg/ml of kanamycin monosulfate (RPI Research Products International Corp, Mt. 

Prospect, IL) for pDNA selection. 

All plasmids were purified using a GenElute™ HP Endotoxin-Free Plasmid 

Maxiprep Kit (Sigma-Aldrich Co., St. Louis, MO), according to the manufacturer’s 

protocol. pDNA concentrations were determined using a NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). An absorbance ratio of 

260 nm to 280 nm and 260 nm to 230 nm was used to access the quality of extracted 

pDNA. The 260/280 ratio approximately 1.8 with the 260/230 ratio approximately 2.0 – 

2.2 was considered free of contaminants 129 168. 

PGAApp preparation 

PGAA (Glycofect™) was obtained from Techulon Inc (Blacksburg, VA). PGAA 

was dissolved in UltraPure™ DNase/RNase-Free distilled water (Invitrogen™, Grand 

Island, NY). Plasmid DNA at a concentration of 200 µg/ml was pre-heated to 50–55°C 

prior to mixing to improve dissolution. PGAA solutions were then diluted with UltraPure™ 

DNase/RNase-Free distilled water to reach the desired amine to phosphate (N/P) ratio. 

Equal volumes of pDNA solution (350 µl) were added to PGAA solutions (350 µl) which 

were then vortexed for 20–30 seconds and incubated at room temperature for 30 
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minutes to form polyplexes. All polyplexes in this study were freshly prepared prior to 

use. 

Determination of size, polydispersity index and zeta 

potential of PGAApp 

Particle size and polydispersity index (PdI) of PGAApp at N/P ratios of 40, 60 and 

80 were measured using the Zetasizer Nano ZS (Malvern Instruments Inc., 

Westborough, MA). Size and zeta potential measurements were performed on 

polyplexes that were dispersed in nanopure water at 25C. The particle size and PdI 

were measured at 173° backscatter detection in disposable polystyrene cuvettes 

(DTS0012) with the total volume of the solution equal to 1 ml.  

Cell lines and cell culture 

Human embryonic kidney 293 (HEK293) cells and murine macrophage cells 

(RAW264.7) were purchased from the American Type Culture Collection (ATCC, 

Rockville, MD). HEK293 cells were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) (Gibco®, Life technologies, Grand Island, NY). RAW264.7 cells were 

maintained in RPMI-1640 medium (Gibco®, Life technologies, Grand Island, NY). All of 

the media were supplemented with 10% fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA), 10 mM HEPES (Gibco®, Life technologies, Grand Island, NY), 50 

µg/ml gentamycin sulfate (Cellgro, Manassas, VA) , 1 mM sodium pyruvate (Gibco®, Life 

technologies, Grand Island, NY) and 1 mM Glutamax™ (Gibco®, Life technologies, 

Grand Island, NY). Cells were incubated at 37°C and 5% CO2. Cells were passaged 

before reaching 100% confluence. Both types of cells were detached from culture flasks 

using trypsinization via trypsin-EDTA (0.25%) with phenol red (Gibco®, Life technologies, 

Grand Island, NY). However, RAW264.7 cells need additional vigorous rinsing with 

media to encourage cell detachment. 
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In vitro gene transfection 

Cells (HEK293 and RAW264.7 cell lines) were seeded in 48-well plates at a 

density of 8 × 104 cells/well in a volume of 500 µl twenty-four hours prior to transfection. 

PGAApp prepared at three different N/P ratios (40, 60 and 80), each containing 1 μg of 

pDNA/well in 100 µl total volume, were added to the cells in serum-free media (500 µl). 

Cells transfected with naked pDNA at an equal amount of pDNA (1 µg per well) were 

used as a negative control. Four hours after cells were exposed to PGAApp, media 

containing the polyplexes was removed and replaced with complete media (1 ml/well) 

and incubated for a further 48 hours. Complete media was replenished every 24 hours. 

After 48 hours, cells were isolated and treated with 200 μl of Reporter Lysis Buffer 

(Promega, Madison, WI) followed by two freeze-thaw cycles to ensure complete lysis. 

Cell debris was centrifuged 16100 x g for 5 minutes using an Eppendorf Microcentrifuge 

Model 5415 D (Eppendorf, Hauppauge, NY), after which the supernatants were collected 

to measure luciferase expression using the Luciferase Assay System (Promega, 

Madison, WI). Supernatants were added to the luciferase assay reagent at a ratio of 

supernatant:luciferase assay reagent of 1:5 and vortexed briefly. Luminescence was 

measured for 10 seconds using the Lumat LB 9507 luminometer (EG&G Berthold, Bad 

Wildbad, Germany) and expressed in relative light units (RLU) with respect to control. 

Supernatants were analyzed for the amount of total protein content using the Micro 

BCA™ Protein Assay Kit (Pierce Biotechnology Inc., Rockford, IL). Bovine Serum 

Albumin standard (2 mg/ml, Pierce Biotechnology Inc., Rockford, IL) was used to create 

a standard curve. Luciferase activity was expressed as relative light units (RLU)/mg 

protein in cell lysates. 

In vitro cytotoxicity assay 

Cells were seeded in 96-well plates at a density of 1 × 104 cells/well. Twenty-four 

hours later, cells were incubated in serum-free media with 1 μg of pDNA complexed to 
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PGAA at various N/P ratios. After 4 hours of incubation, 100 μl of complete media was 

added to each well. After 24 hours of exposure to treatments, media was replaced with 

complete media. After 48 hours, the media in each well was replaced with 100 µl of fresh 

complete media and 20 µl of the MTS tetrazolium compound or CellTiter 96® Aqueous 

One Solution reagent (Promega Corporation, Madison, WI). The plate was incubated at 

37°C, 5% CO2 for 1 - 4 hours and the absorbance was recorded at 490 nm using a 

Spectra Max® plus Microplate Spectrophotometer (Molecular Devices, Sunnyvale, 

California). Percent relative cell viability values were calculated by dividing the UV 

absorbance value from wells containing treated cells by the value obtained from 

untreated wells and multiplying the resultant value by a factor of 100. 

Statistical analysis 

Data are expressed as mean ± SD. Statistical significance was determined using 

Kruskal-Wallis with Dunn’s multiple comparison test compared to the control. A p-value 

less than 0.05 was considered significant. Statistical analyses were performed using 

GraphPad Prism version 5.02 for Windows (GraphPad Software, San Diego, CA, 

www.graphpad.com).  

Results and discussions 

Plasmid amplification and purification 

After purification with the GenElute™ HP Endotoxin-Free Plasmid Maxiprep Kit, 

the yield of VR1255 pDNA was equal to 1.66 g per 500 ml Lennox L Broth. Since pDNA 

was used for transfection, purity was critical. The 260/280 ratio is used to evaluate the 

presence of contaminating protein in the pDNA 168. Another ratio that is used to evaluate 

the purity of pDNA is 260/230. If this ratio is lower than 2.0, it is an indication of 

contaminants that exhibit an absorbance near 230 nm, such as 

ethylenediaminetetraacetic acid (EDTA) and guanidine hydrochloride which were used in 
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nucleic acid purification from cell extracts 168, 169. On average the 260/280 and 260/230 

ratios were equal to 1.83 and 2.09, respectively, which corresponded to DNA with high 

purity.  

Size and polydispersity index (PdI) of PGAApp 

The average size of polyplexes as tabulated in Table 1 shows that changing the 

N/P ratio from 40 to 60 resulted in an increase in nanoparticle diameter from 396.8 to 

487.4 nm. Polyplexes prepared at an N/P ratio of 80 displayed an average size of 458.8 

nm. In addition, small and consistent values of PdI suggest that particle aggregation did 

not vary greatly as the N/P ratio at which the polyplexes were prepared changed. 

In vitro gene transfection 

The transfection efficiency of PGAApp was evaluated by measuring luciferase 

expression. Figure 3-2 shows RLU values obtained from each treatment group 

normalized against total protein in each sample. PGAApp generated significantly 

stronger transgene expression when compared to naked pDNA in both HEK293 (Figure 

3-2A) and RAW264.7 (Figure 3-2B) cell lines. Using polyplexes prepared at increasing 

N/P ratios results in decreased expression of luciferase. The maximum expression of 

luciferase was obtained with polyplexes prepared at an N/P ratio of 40. This level of 

expression was significantly different from all other treatment groups in both cell lines. 

In vitro cytotoxicity assay 

After 48 hours of incubation, the viability of cells was found to decrease as the 

N/P ratio of the polyplexes increased. PGAApp prepared at an N/P ratio of 40 were less 

cytotoxic than PEI-pDNA polyplexes (PEIpp) prepared at an N/P ratio of 20 in both types 

of cell lines (Figure 3-3). 

PGAA is a cationic polymer that consists of carbohydrate groups and four 

oligoethyleneamines linked together by amide bonds 162. PGAA polymers are 
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degradable and hydrolyze under physiological conditions and this degradation may 

enhance the release of pDNA from polyplexes 79. Previous studies evaluating the 

optimal construct of PGAA for transfection have shown that the quantity and position of 

the hydroxyl groups can have a significant impact on transfection efficiency and that 

galactarate polymers with four ethylenimine units generated the strongest transgene 

expression 77, 170. Complexing PGAA with pDNA results in polyplexes that have a net 

positive charge similar to polyplexes made from PEI that are capable of binding to the 

net negative charge on the surface of cells that are typically coated with sulfated 

glycosaminoglycans. Internalization of the PGAApp is reported to take place through 

endocytosis with 80% of PGAApp internalization blocked when cells were exposed to 

filipin III (a macrolide antibiotic which inhibits caveolae-mediated endocytosis171) 172. 

Since PGAApp contain positively-charged amines, they were expected to escape the 

endosomes through the “proton sponge” effect. However, intracellular delivery of pDNA 

from PGAApp after cellular uptake is, as yet, undetermined 170.  

Optimizing the transfection efficiency using cationic polymers complexed with 

pDNA can be achieved by evaluating varying N/P ratios at which the polyplexes are 

prepared 131, 154, 155. In this study, we showed that PGAApp prepared at an N/P ratio of 40 

gave the maximum expression of luciferase in both HEK293 and RAW264.7 cells among 

all N/P ratios tested. In addition, we show that PGAApp prepared at an N/P ratio of 40 

have the lowest cytotoxicity relative to polyplexes prepared at N/P ratios of 60 and 80. 

PGAApp were also found to have cytotoxicity that was lower than PEIpp prepared at an 

N/P ratio of 20. Although it should be acknowledged that this difference in cytotoxicity 

might be reduced if PEIpp were utilized at lower N/P ratios.  

We discontinued the study due to the limited amount of PGAA. From this study, 

the lowest N/P ratio tested (PGAApp at N/P 40) showed the highest luciferase 

expression. In future studies, the PGAApp formed at lower N/P ratios should be 
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characterized and tested for luciferase expression and cytotoxicity since lower N/P ratios 

should cause lower cytotoxicity which could result in higher transfection efficiency. 

Conclusions 

This study provides independent verification of the strong potential of PGAA as a 

non-viral vector and shows that PGAA (Glycofect™) has strong potential for transfecting 

murine macrophage-like (RAW264.7) cells and human embryonic kidney (HEK293) cells 

with low cytotoxicity. 
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Table 3-1 Particle size and polydispersity index (PdI) of PGAApp prepared at different 
N/P ratios 

N/P ratio Particle size (diameter) Polydispersity index 

40 

60 

80 

397 

487 

459 

0.427 

0.424 

0.426 

 

 

 

Figure 3-1 Poly(galactaramidoamine) (PGAA) structure.  
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Figure 3-2 Luciferase expression of HEK293 (A) and RAW264.7 (B) cells that have been 
treated as indicated. Transfection experiments were carried out by incubating 
cells with PGAApp, where indicated, for 4 hours (see methods section for 
further details). Control = cells treated with PBS. Each treatment involving 
pDNA contained 1 μg pDNA/well. Data are expressed as mean ± SD (n = 3). 
Kruskal-Wallis with Dunn’s multiple comparison test compared to the control 
was used. * p < 0.05, ** p < 0.01. 
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Figure 3-3 Cytotoxicity of PGAApp in HEK293 (A) and RAW264.7 (B) was determined by 
MTS assay (see methods). The cells were seeded into a 96-well plate at a 
density of 1 x 104 cells per well one day prior the experiment and exposed to 
the indicated treatments (1 µg pDNA per well) for 48 hours. pDNA = cells that 
were treated with pDNA (VR1255) solution at the concentration of 1 µg/well. 
Data are expressed as mean ± SD (n = 2). Kruskal-Wallis with Dunn’s 
multiple comparison test compared to pDNA was used. * p < 0.05. 
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CHAPTER 4 CORRELATING INTRACELLULAR NON-VIRAL 

POLYPLEX LOCALIZATION WITH TRANSFECTION EFFICIENCY 

USING HIGH-CONTENT SCREENING 

Introduction 

High-content screening (HCS) is a combination of high-throughput techniques 

and multicolor fluorescent cellular imaging enabling simultaneous quantitative 

measurements of multiple parameters in a single cell level from one experiment. HCS 

can study both live and fixed cells. In live cell assays, HCS can collect kinetic information 

from each individual cell within a well. HCS can follow and quantify dynamic behavior 

such as chemotaxis. Fixed cell assays allow the experiment to be easily controlled and 

conducted in larger scale automation with a wide variety of fluorescent probes and 

antibodies. HCS collects a large amount of differential subcellular spatio-temporal 

information, providing unbiased, statistically significant data, making it an excellent 

candidate for the intracellular tracking of submicron materials, such as DNA vectors 173, 

174. In general, cellular studies using fluorescence microscopes are conducted on a 

small-scale which usually refers to 10 – 100 cells per sample 175. These small-scale 

experiments nevertheless require extensive human labor to collect and analyze the data. 

HCS makes it possible to perform cell-based studies on a large-scale where one can 

collect and analyze data from more than 106 cells per sample 175.  

Although, to date, HCS has been mainly focused on primary screening for 

candidate drug molecules 174, 176, 177, it also has the potential to be of value in the gene 

delivery field. HCS can be used to assess the effect of non-viral gene vectors on cells in 

vitro where multiple parameters (such as cytotoxicity, transfection efficiency, cell 

permeability) can be rapidly and simultaneously measured 178. 

Gene delivery/therapy is the process where genetic materials are transferred into 

cells with the ultimate goal of curing or abating diseases thereby improving patients’ 
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clinical status 179. Gene delivery vehicles that transport DNA/RNA into cells can be 

divided into two categories, viral and non-viral vectors. Viral vectors usually result in 

much higher transfection efficiencies when compared to non-viral vectors. However, 

their toxicity and immunogenicity issues are sometimes problematic and consequently 

need to be addressed or avoided 180. Non-viral gene delivery has gained substantial 

interest as a therapeutic tool because of its safety profile, ability to deliver large gene 

sizes, ease of preparation and its potential to be modified for cell- or tissue-targeting 180-

182. These traits are generally considered strong advantages over current viral-based 

gene delivery systems. However, low transfection efficiencies are still a major concern 

for non-viral based gene delivery 180, 183-186. To achieve high transfection efficiencies, the 

DNA encoding the gene of interest needs to be effectively taken up by cells and then 

transported to the nucleus 187, 188. To design a highly efficient gene vector, it is important 

to gain an insight into the mechanics and kinetics of uptake and intracellular trafficking 

pathways of gene vectors, DNA and polyplexes. Thus, the factors contributing to 

suboptimal transgene expression may be identified and potentially averted through 

subsequent modifications 48. 

Manifold efforts have been made to study intracellular trafficking processes and 

numerically quantify gene carriers within the cell and its subcellular compartments. For 

example, the importance of various uptake and trafficking pathways such as endocytosis 

and macropinocytosis has been assessed using conditions to specifically inhibit crucial 

steps in these pathways 48. The internalization kinetics of single particles can be tracked 

using wide-field fluorescence microscopy in combination with custom-built software for 

single-particle tracking 189. Confocal microscopy and two-photon fluorescence correlation 

spectroscopy have also been used to track polyplexes 190-192. Among these studies, only 

Akita et al. have both quantified and localized the transfecting materials (using confocal 

image-assisted three-dimensionally-integrated quantification)191. The study was 

conducted by analyzing approximately 30 - 50 randomly selected cells 191. Although it is 
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possible to observe the uptake and cellular trafficking of polyplexes by the 

aforementioned novel methodologies, they are limited by the number of cells that can be 

analyzed manually, thereby placing limitations on attaining statistically significant 

outcomes.   

This study entails a report on an application for HCS that involved evaluating the 

transfection efficiency and cytotoxicity of a cationic polymer, polyethylenimine (PEI) 158, 

188, 193. Since PEI was first used for gene delivery purposes in 1995, it has become one 

of the most effective non-viral gene vectors 49, 61, 158, 194. PEI was chosen as a model 

polymer because of its well characterized properties. This study also shows, for the first 

time, a relationship between successfully transfected cells and the number of PEI or 

polyplexes or polyplex clusters inside the cytoplasm. Thus it is demonstrated here that 

HCS has the potential to be a powerful tool for analyzing uptake and intracellular 

trafficking of non-viral gene delivery vectors along with measuring other parameters, 

such as cytotoxicity and transfection efficiency (GFP expression), simultaneously. 

Materials and methods 

Cell lines and cell culture 

Human Embryonic Kidney cells (HEK293) were purchased from American Type 

Culture Collection (ATCC, Rockville, MD). Cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) (Gibco®, Life technologies, Grand Island, NY) supplemented 

with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 1 mM GlutamaxTM 

(Gibco), 1 mM sodium pyruvate (Gibco), 10 mM HEPES (Gibco) and 50 µg/ml 

gentamycin sulfate (Cellgro, Manassas, VA). Cells were maintained at 37C and 5% 

CO2. Cells were passaged before reaching 100% confluence. 
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Amplification and purification of pDNA 

A 4.7 kb plasmid encoding enhanced green fluorescent protein (GFP), pEGFP-

N1, was a generous gift from Satheesh Elangovan, College of Dentistry, University of 

Iowa. This pDNA was transformed into Escherichia coli DH5α and amplified in Lennox L 

broth (Research Products International Corp., Mount Prospec, IL) media and purified 

using a GenEluteTM HP Endotoxin-Free Plasmid Maxiprep Kit (Sigma-Aldrich, St. Louis, 

MO), according to the manufacturer’s protocol. pDNA concentration in endotoxin-free 

water (Sigma-Aldrich) was determined using a NanoDrop 2000 spectrophotometer 

(Thermo Fisher Scientific Inc., Waltham, MA).  

Preparation of PEI polyplexes (PEIpp) 

To be able to track the polyplexes, fluorescently tagged branched 

polyethylenimine (PEI) was chosen. Rhodamine tagged branched PEI (rhPEI, MW 25 

kDa with a labeling ratio, Molmonomer/Moldye, of 180/1) was purchased from Surflay 

Nanotech GmbH (Schwarzschildstr, Berlin, Germany). Branched PEI (bPEI, MW 25 kDa: 

Sigma-Aldrich) was used as a positive control for transfection. 

rhPEI polyplexes (rhPEIpp) were formed based on the ionic interaction between 

positively charged rhPEI and negatively charged pDNA. rhPEIpp can be formed at 

varying ratios of amine groups in PEI to phosphate groups in pDNA (N/P ratios). In this 

study an N/P ratio of 10 was used. The rhPEI (9.96 mg/mL) and pDNA (200 µg/ml) 

solutions were prepared in UltraPure DNase/RNase-Free distilled water (Invitrogen, 

Grand Island, NY). All solutions were sterilized using 0.22 µm syringe filters (Millex®-GV, 

merck Millipore Ltd., Carrigtwohill, Germany). An equal volume of 125 - 250 µL of rhPEI 

solution (cationic) was pipetted into an equal volume of pDNA solution (anionic), 

vortexed for 20 s and then incubated at room temperature for 30 min before use. The 

rhPEIpp were prepared fresh. The final concentration of pDNA after the rhPEIpp were 

formed was 50 µg/ml. In the same manner, bPEIpp were prepared with a bPEI starting 
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concentration of 1.0 mg/ml (Table 4-1). bPEIpp were fixed at N/P ratio of 10 which is 

known to give best transfection efficiencies 195, 196. The final concentration of pDNA after 

bPEIpp were formed was also equal to 50 µg/ml. 

Transfection and sample preparations for HCS 

Black 96-well plates (cell carrier with transparent bottom, Perkin Elmer Inc., 

Waltham, MA) were sterilized using ultraviolet light prior to use. A solution of 0.01% poly-

l-lysine (MW 150,000 – 300,000, Sigma-Aldrich) was used to coat the surface of the 

wells of the microplates. Poly-l-lysine solution was added into each well at a volume of 

50 µl. Plates were rocked gently to ensure an even coating. After 10 min of incubation, 

poly-l-lysine was removed. Wells were rinsed with 100 µl of UltraPure DNase/RNase-

Free distilled water and allowed to dry in a sterile environment (class II biosafety cabinet 

with laminar flow) overnight. 

HEK293 cells at a density of 5000 or 7500 cells per well were plated in a total 

volume of 100 μl of fully supplemented media. After 24 h, the media was gently 

aspirated and replaced with 100 μl of serum-free media containing bPEIpp or rhPEIpp at 

N/P 10 with pDNA amounts of 0.5 or 1 µg per well (10 and 20 µl, respectively). An 

untreated group was used as a negative control. All treatments were added according to 

the pictured 96-well plate map (Figure 4-1). After cells were exposed to PEIpp for 4 h, 

the media was gently aspirated and the cells were gently rinsed once with 100 µl of 

warm PBS and then 100 μl of fully supplemented media was added to each well. Twenty 

hours later media was removed and cells were gently rinsed once with PBS before being 

fixed with 4% formaldehyde (Alfa Aesar, Ward Hill, MA) in PBS for 30 min. Cells were 

then rinsed with PBS prior to incubating with 1 µg/ml of Hoechst dye to stain the nucleus 

for at least 15 min prior to imaging. 
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Imaging using HCS and image analysis 

The aforementioned microplates containing fixed and stained cells were loaded 

onto a High Content Screening Operetta® system (HCS, Perkin Elmer Inc. Waltham, 

MA). This system comprises an inverted epifluorescence microscope that uses a xenon 

arc lamp excitation source with interchangeable excitation and emission filters 173, 197. 

Three fluorescent channels for GFP (ex. at 460 – 490 nm, em. at 500 – 550 nm), 

Hoechst (ex. at 360 - 400 nm, em.at 410 - 480 nm) and rhodamine (ex.at 520 – 550 nm, 

and em. at 560 - 630 nm), were utilized, with 18 fields/well and with each field 

comprising 1 stack of 8 images taken over a vertical span of 4 μm with 0.5 µm intervals 

(Figure 4-2 to Figure 4-4). 

Images were acquired on an Operetta System using a 20x high NA objective 

lens. The images collected were analyzed by the accompanying Harmony® Image 

Analysis software (Perkin Elmer Inc., Waltham, MA) (Figure 4-2). The analysis of each 

field was performed, where each field was one stack (8 images per stack), and included: 

1) defining the nuclei of cells, as determined by the intensity of staining and morphology 

of the nuclei using the Hoechst Channel and Method B (proprietary algorithm, Perkin 

Elmer Inc.). The nuclear areas of these cells were then identified as “true nuclei”. Based 

on the following features (Figure 4-5):  possessing areas smaller than 280 µm2; having 

Hoechst intensities (a mean value derived from the total pixel intensity values for each 

nucleus) larger than 2000; and having contrasts larger than 0.30. The contrast is the 

readout of intensity after normalization of the highest and lowest intensity to 1 and 0, 

respectively. 2) Defining cells using the GFP channel and Method B. By using the same 

method used for the calculation of intensity and morphology of the nuclei, the areas of 

the cells, or “true cells”, were defined as follows: possessing areas smaller than 1040 

µm2; having GFP intensities (mean) larger than 0 (for both GFP(+) and GFP(-) cells); 

and having contrasts larger than 0.25. 3) Defining GFP(+) and GFP(-) cytosols using the 

GFP channel, true nuclei and Method E (proprietary algorithm, Perkin Elmer Inc.). 
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Designating cytosols as GFP(+)  meant that they had to have areas larger than 180 µm2 

(calculated by subtracting the areas of the true nuclei from the areas of true cells) and 

GFP intensities larger than 120 (Figure 4-5A). The GFP(-) cytosols were assigned 

similarly except that they had to possess GFP intensities smaller than 120 (Figure 4-5B). 

4) Locating the PEIpp, or “micronuclei” (as defined by Harmony® Image Analysis 

software), using the rhodamine channel, the cytosolic region or nuclear region, and 

Method B. The PEIpp in the GFP(+) or GFP(-) cytosolic region were further defined by 

their particle area being smaller or equal to 80 µm2. In general, polyplexes made from 

branched PEI and pDNA at a N/P ratio of 10 are approximately 100 nm in diameter with 

a positive charge when measured in water at room temperature by dynamic light 

scattering 198. However, we cannot determine the accurate size of polyplexes which are 

smaller than half of the wavelength of the excitation source (1/2λ: 260 – 275 nm) due to 

the light diffraction limit in our optical system. Thus, in the context of the HCS analysis 

here, PEI polyplexes or PEIpp may be referring to single PEI polyplex particles or a 

cluster of PEI polyplexes. In the analysis, the true nuclei values were used to define 

viable cell numbers per well, and the percentage of GFP(+) cells of the total cell 

population (both GFP(+) and GFP(-) cells) was used to define the transfection efficiency. 

Manual counting of GFP(+) cells  

Manual counting of GFP(+) and GFP(-) cells from the same set of images was 

performed using Paint (Microsoft Windows version 6.1 Build 7601: Service Pack 1, 

Microsoft Corporation, WA). Images from HEK293 cells treated with rhPEIpp (0.5 µg and 

1.0 µg pDNA/well) were used. In each well, at least 900 cells were counted. 

Cytotoxicity of PEIpp using MTS assay 

Cytotoxicity of PEIpp was determined using an MTS assay. HEK293 cells were 

plated into wells of a poly-l-lysine coated 96-well plate at two different seeding densities, 

5000 and 7500 cells per well. Twenty-four hours later, media was aspirated and 
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replaced with PEIpp N/P 10 (containing either 0.5 or 1 µg of pDNA) in serum free media. 

Cells were exposed to treatments for 4 h, rinsed gently with warm PBS and then 

complete DMEM media was added. After 24 h, media was aspirated and cells were 

rinsed gently with PBS before being replaced with 100 µL of fresh media plus 20 µL of 

MTS tetrazolium compound (CellTiter 96® AQueous One Solution, Promega 

Corporation, Madison, WI). The plate was incubated at 37C and 5% CO2 for 4 h and 

then the absorbance of the solution in each well was recorded at 490 nm using a 

Spectra Max plus 384 Microplate Spectrophotometer (Molecular Devices, Sunnyvale, 

CA). Background of 490 nm absorbance was corrected by subtracting absorbance 

obtained from the experimental well with absorbance obtained from 100 µL of media and 

20 µL of MTS tetrazolium compound which was equal to 0.2848. Percent relative cell 

viability values were determined by dividing the absorbance obtained from wells 

containing treated cells by the absorbance obtained from untreated cells with the same 

seeding cell density (5000 or 7500 cells per well) and multiplying the resultant value by a 

factor of 100. 

Statistical analysis 

Data are expressed as mean ± SEM. To analyze GFP expression in cells with 

0.5 µg and 1.0 µg of pDNA in PEIpp, one-way ANOVA with Tukey’s multiple 

comparisons test was performed. To analyze the number of PEIpp in cytoplasm, two-

way ANOVA with Bonferroni’s multiple comparisons test was used. To analyze cell 

numbers, two-way ANOVA with Dunnett’s multiple comparisons test was performed. All 

statistical analyses were conducted using GraphPad Prism 6 for Windows (GraphPad 

Software, Inc., San Diego, CA, www.graphpad.com). The p-values of less than 0.05 

were considered significant. 
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Results and Discussion 

HCS can rapidly determine transfection efficiencies 

As a proof of concept, transfection of HEK293 cells with PEIpp was performed in 

these studies. PEI is a well-known cationic polymer that has been used as a gene vector 

since 1995 49. The HEK293 cell line was chosen because it is widely used in transient 

gene expression systems 42, 166. As described in the methods section, HEK293 cells 

were exposed to PEIpp complexes (containing pEGFPN-1) and subsequently (24 hours 

later) imaged using HCS. In order to determine transfection efficiency, the fluorescence 

intensity obtained from each cell was determined. By contrasting untreated cells 

(negative controls) and GFP transfected cells, a threshold (mean intensity of the cell) 

was set at 120 so that there were less than 0.08% GFP(+) cells per well for the 

untreated samples, whilst in the treated samples, cells with a mean intensity larger than 

120 were considered successfully transfected. The ratio of GFP(+) cells to total cells was 

used to define the  transfection efficiency. Figure 4-6A and 4C shows images generated 

from HCS from HEK293 cells that were treated with bPEIpp (0.5 µg pDNA/well) and 

untreated, respectively. In Figure 4-6B, an analyzed image shows GFP(+) cells from the 

same image (Figure 4-6A) as green and cells expressing undetectable levels of GFP 

(GFP(-)) as red.  Figure 4-6D shows untreated cells with no GFP expression (all cells 

were labeled in red).  

It was determined that rhPEIpp had transfection efficiencies of 4.0% and 8.9% 

with 0.5 µg and 1.0 µg of pDNA per well, respectively. Under the same conditions, 

bPEIpp showed higher transfection efficiencies of 7.5% and 10.7% with 0.5 µg and 1.0 

µg of pDNA per well, respectively (Figure 4-7A). Increasing the amount of pDNA per well 

from 0.5 µg to 1.0 µg increased the transfection efficiency in cells that were treated with 

either rhPEIpp or bPEIpp. Since there were two cell seeding densities (5000 and 7500 

cells per well), the number of GFP(+) cells in the 7500 cells/well seeding density group 
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(Figure 4-7D) was higher than the group with 5000 cells/well seeding densities (Figure 4-

7B). Nevertheless, the percent GFP(+) cells in both groups were quite similar (Figure 4-

7A and Figure 4-7C). 

To confirm results obtained with HCS, manual counting of GFP(+) and GFP(-) 

cells (at least 900 cells per well) from the same set of images was performed (Figure 4-

8). Using two-way ANOVA with Bonferroni’s multiple comparisons test, there was no 

significant difference when percent GFP(+) cells derived from either method was 

compared. In Figure 4-8, manual counting showed that rhPEIpp had transfection 

efficiencies of 5.2% and 8.0% with 0.5 µg and 1.0 µg of pDNA per well, respectively. 

This manual counting is a validation for using HCS as a reliable tool to measure 

transfection efficiencies when the transgene product is inherently detectable or rendered 

detectable through fluorescence. To provide statistically significant data, large sample 

sizes are needed. As the sample size (cell number) increases, the time and labor used 

to manually gather the data proportionally increases. The results from HCS were 

automatically obtained from images that consisted of between 1000 – 8000 cells per 

well. Thus, HCS provides an opportunity to reduce bias and analyze a larger data set 

compared to manual counting which requires tedious labor and inordinately longer times, 

particularly when multiple parameters are being acquired. 

Cell enumeration using HCS as an indicator of cytotoxicity 

In addition to measuring the transfection efficiency, HCS can also count the cells 

simultaneously for cytotoxicity evaluation. Using Hoechst dye stained nuclei as a marker 

for cells, it was possible to program the HCS software to identify and enumerate the 

number of cells in each well (Figure 4-9). It is clear that an image obtained from a well 

with 5000 cells/well seeding density (Figure 4-9A) indicated a lower number of cells 

when compared to an image obtained from a well with 7500 cells/well seeding density 
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(Figure 4-9B). However, it will be excessively time consuming to manually count all the 

cells in each well. HCS, on the other hand, can perform this function rapidly.  

An algorithm in the HCS software was set to exclude dying (or dead) cells 

containing fragmented nuclei from the analysis. Only cells containing intact nuclei were 

enumerated as shown in Figure 4-9C. To validate the reliability of HCS in measuring the 

cytotoxicity of PEIpp, an MTS assay was run in parallel. The MTS assay is a well-known 

colorimetric assay for measuring cell cytotoxicity 199. The results obtained from this 

assay were expressed as percentage relative cell viability compared to the untreated 

cells (Figure 4-8B). 

Viable cell numbers per well obtained from HCS (Figure 4-10A) were compared 

to results obtained from the MTS assay (Figure 4-10B) and were found to be 

comparable (Figure 4-10). Using two-way ANOVA with Bonferroni’s multiple 

comparisons test, there was no significant difference when results obtained from HCS 

and MTS were compared. Wells containing cells that were treated with higher amounts 

of rhPEIpp (1.0 µg pDNA per well) possessed lower cell numbers, as determined by 

HCS, compared to wells treated with rhPEIpp containing 0.5 ug pDNA. The findings 

were corroborated by the results from the MTS assay performed in parallel. Moreover, 

HCS provided, in contrast to the MTS assay, absolute viable cell numbers per well.  

Thus, HCS, along with being capable of accurately measuring transfection 

efficiency (shown above), can simultaneously be used to measure cytotoxicity of non-

viral gene delivery systems. 

GFP(+) cells possessed a higher number of PEIpp in the 

cytoplasm than GFP(-) cells 

Using HCS, the cytoplasmic area of each cell (or region of interest) was identified 

using endogenous autofluorescence at excitation and emission ranges similar to GFP 

(Figure 4-3 and 11B). The cytoplasmic region was programmed to be delineated from 
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the nuclear region by differential fluorescence detection using Hoechst stain. The 

location of rhPEIpp was detected and enumerated in the cytoplasm and the nucleus in 

both GFP(+) and GFP(-) cells (Figure 4-11C). For the first time, a relationship was 

observed between successfully transfected cells and the number of rhPEIpp within the 

cell. Whilst no rhPEIpp were detected in the nuclei of either GFP(+) or GFP(-) cells, 

approximately 4-5 complexes/cell were detected in the cytoplasm of GFP(+) cells that 

were treated with rhPEIpp delivering 0.5 or 1.0 ug pDNA  per well. This was found to be 

significantly (p-value < 0.0001) higher than the number of rhPEIpp found in the 

cytoplasm of GFP(-) cells (less than 1 complex/cell, on average). Although cells that 

were treated with rhPEIpp (1.0 µg pDNA/well) showed a significantly higher transfection 

efficiency than cells that were treated with rhPEIpp (0.5 µg pDNA/well) (Figure 4-7B), 

there was no significant difference in the number of rhPEIpp per cell when 0.5 μg versus 

1 μg of pDNA was compared in the GFP(+) populations (Figure 4-12). Since rhPEIpp 

toxicity increases with the dose of rhPEIpp, it is possible that cells that contained more 

than 4 – 5 rhPEIpp could not survive long enough to be detected at the time of data 

acquisition (24 hours post-transfection). It is possible that 4 - 5 polyplexes in the 

cytoplasm is an optimal amount for the successful transfection of healthy cells. 

In this study, PEIpp were not detected inside the nuclei of HEK293 cells at 24 

hours post-transfection. This result suggests that pDNA may disassociate from the 

PEIpp in the cytoplasm prior to reaching the nucleus, where it is then available for 

transcription. Support for this idea comes from Remy-Kristensen et al. 200 who studied 

the role of fluorescently (FITC) labelled bPEIpp endocytosis in mouse fibroblasts (L929) 

using confocal microscopy. Ninety minutes post-transfection, labeled bPEIpp could not 

be detected inside the transfected L929 nucleus but instead were found on the outer 

nuclear membrane surface. In addition, Itaka et al. 195 studied intracellular distribution of 

bPEIpp using confocal microscopy with fluorescence resonance energy transfer (FRET) 

in human embryonic kidney (293T) cells. Twenty-four hours after transfection, bPEIpp 
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were distributed in the cytoplasm but there was no evidence of bPEIpp in the nuclei. In 

contrast, Godbey et al. 190 studied PEIpp in EA.hy 926 cells (derived from a fusion of 

human lung carcinoma, A549, and human umbilical vein endothelial cells) using confocal 

microscopy. PEIpp were localized in nuclei 3.5 - 4.5 hours post-transfection. However, to 

the best of our knowledge this latter finding has not been reproduced in other cell types 

and may reflect an idiosyncratic trait that pertains to this particular cell line.  

Conclusion 

The purpose of this study was to demonstrate the potential of using HCS as a 

tool to study non-viral gene vector-mediated transfection. Specifically, regarding PEIpp, 

there is much interest in enhancing the transfection efficiency of these polyplexes whilst 

simultaneously reducing their cytotoxicity. Thus, studies of mechanism of transfection by 

these polyplexes are believed to be important 201, 202. Since HCS is an image based 

system, it is feasible to track non-viral vectors and pDNAs by labeling them with 

fluorescent tags. Because of its automation, HCS has the potential to be used to 

elucidate optimal conditions achieving maximal transgene expression with minimum 

toxicity for a variety of gene vectors using various cell types under a wide range of 

conditions 203, 204. Conventional modes of analysis (manual counting and MTS assays) 

were used to validate the HCS used here. Although in this study, fixed cells were used 

for simplicity, HCS also has the ability to study polyplexes using live cell imaging and 

thus collect meaningful data at different time points which could be used to elucidate the 

steps of intracellular trafficking of non-viral based gene carriers. 

The capacity of HCS to make quantitative multi-parametric measurements of 

cells and cell populations through rapid automated fluorescence image capturing has 

been of great value in drug discovery. HCS, however, also has great promise in the 

gene delivery field, where not only information about transfection efficiencies and 

cytotoxicities of various non-viral gene vectors can be accrued, but also, as shown here, 
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the tracking of vectors (such as rhPEIpp) inside cells can be simultaneously achievable. 

This provides a strong rationale for using HCS in the future as a screening system for 

tens or hundreds of novel transfection reagents simultaneously, so long as transgenes 

expressing fluorescent proteins are used for determining transfection efficiencies, and 

fluorescently tagged vectors are used for establishing the mechanism(s) of transfection 

through subcellular tracking. 
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Table 4-1 An example of the volume of each substances used to prepared polyplexes. 

 Cationic solution (250 µl total 
volume) 

Anionic solution (250 µl total 
volume) 

 PEI solution 
(µl) 

Water (µl) pEGFP 
solution (µl) 

Water (µl) 

rhPEIpp 6* 244 125*** 125 

bPEIpp 33** 217 125*** 125 

*The concentration of rhPEI is equal to 9.96 mg/ml. 
**The concentration of bPEI is equal to 1.0 mg/ml. 
***The concentration of pEGFP is equal to 200 µg/ml. 

 

 

 

Figure 4-1 96-well plate map showing cell seeding and treatment plan. HEK293 cells 
(5000 or 7500 cells per well) were treated indicated polyplexes (rhPEIpp and 
bPEIpp) at the pDNA amount of 0.5 and 1.0 µg/well for 4 hours. Media (100 
µl) was added into surrounded wells to reduce evaporation. Wells located at 
the outermost perimeter of the 96-well plate were left empty because the 
HCS camera cannot fully capture these wells. 
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Figure 4-2  Caption of part of the Harmony® Image Analysis software (Perkin Elmer Inc., 
Waltham, MA)1 showed 96-well plate map (A), fields of interest in each well 
(B) and stacks in each field showing interval length of 0.5 µm in vertical 
between each image (C). The wells of interest and the fields of interest within 
each well are shown in blue. Yellow (overlaying a blue well/field) represents 
the spot of interest which in this case is cells image at the stack -0.5 µm, from 
the upper left corner in well C7.   

                                                

1 This image was published with the permission from Jacob G. Tesdorpf, PhD, Director 
Cellular Imaging & Detection, Life Sciences & Technology, Perkin Elmer, 
Hamburg, Germany. 
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Figure 4-3 Caption of the Harmony® Image Analysis software (Perkin Elmer Inc., 
Waltham, MA)2 Image in the middle (red arrow) represents cells obtained 
from the stack position -0.5 µm, the upper left corner in well C7 (more 
explanation in Figure 4-2. 

 

                                                                                                                                            
 

2 This image was published with the permission from Jacob G. Tesdorpf, PhD, 
Director Cellular Imaging & Detection, Life Sciences & Technology, Perkin Elmer, 
Hamburg, Germany. 
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Figure 4-4 A) The 18-fields realistic view obtained from 1 well in 96-well plate and (B) the 
18-fields (from one well) packed view. Scale bars in both images represent 1 
mm. 
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Figure 4-5 Cartoons representing cells and parameters used in the image analysis by 
the Harmony® Image Analysis software (Perkin Elmer Inc., Waltham, MA). 
GFP(+) cells are cells that have GFP intensities in the cytosol larger than 120 
(A). GFP(-) cells are cells that have GFP intensities in the cytosol smaller 
than 120 (B). Nucleus (blue), GFP(+) cytosol (green), GFP(-) cytosol (grey), 
PEIpp (yellow). 
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Figure 4-6 Images obtained from cells that had been treated with bPEIpp (0.5 µg/well) 
(A) and untreated cells (C). (B) and (D) are the same respective images as 
((A) and (C)) showing GFP(+) (green) and GFP(-) (red) cells after analysis by 
HCS. Designation of GFP(+) versus GFP(-) was based on cell fluorescence 
intensity above and below a set threshold, respectively (see methods section 
for details). All scale bars represent 100 µm. 
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Figure 4-7 Percentage GFP(+) cells in HEK293 cultures treated as indicated and plated 
at (A) 5000 and (C) 7500 cells per well, respectively, as determined using 
HCS. Number of GFP(+) cells in HEK293 cultures treated as indicated and 
plated at (B) 5000 and (D) 7500 cells per well, respectively. Data are 
presented as mean ± SEM (n = 3 - 4). One-way ANOVA with Dunnett’s 
multiple comparisons test was performed to assess statistically significant 
differences between treated and untreated groups. *** p < 0.001, ** p < 0.01,* 
p < 0.05. 0.5 µg and 1.0 µg represent the amount of pDNA in each well. 
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Figure 4-8 Percent GFP(+) cells identified using manual counting versus HCS, in 
HEK293 cell cultures that were treated with rhPEIpp at the indicated pDNA 
amount.  Data are presented as mean ± SEM (n = 3). Two-way ANOVA with 
Bonferroni’s multiple comparisons test was used. There is no significant 
difference when percent GFP(+) values obtained from HCS versus manual 
counting were compared. In the inset showed an image that was used for 
manual counting. Nuclei were marked and counted using a pink brush. 
GFP(+) cells were marked and counted using a green brush. Scale bar 
represents 100 µm. 



www.manaraa.com

92 
 

 

Figure 4-9 Nuclei stained by Hoechst dye were used to determine cell number, using 
HCS, from wells seeded with (A) 5000 cells and (B) 7500 cells. (C) The nuclei 
were counted as shown using different colored cell perimeters. These 
different colors allowed adjacent nuclei to be distinguished. Scale bars in all 
images represent 100 µm. 
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Figure 4-10 Cell viability of HEK293 cells treated with rhPEIpp (containing indicated 
amount of pDNA), as measured by (A) HCS, which determined the number of 
cells per well, and (B) MTS assay, which determined percentage relative cell 
viability.  Percentage relative cell viability values were determined as 
described in the methods section. Two-way ANOVA with Dunnette’s multiple 
comparisons to the untreated group was used. 0.5 µg and 1.0 µg represent 
the amount of pDNA in each well. (C) Representative result comparing both 
methods (HCS and MTS). Two-way ANOVA with Dunnette’s multiple 
comparisons to the untreated group was used for (A) and (B). Two-way 
ANOVA with Bonferroni’s multiple comparison test was performed for (C) 
where no significant difference was found when comparing the percent 
relative cell viabilities, obtained from each method, of HEK293 cells treated 
with rhPEIpp. Data are presented as mean ± SEM (n = 3–4:A, n = 5:B). **** p 
< 0.0001, ** p < 0.01. 
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Figure 4-11 Images showing: (A) GFP expression (green) in HEK293 cells (nuclei are 
blue) with PEIpp (yellow); (B) the cytoplasmic region as determined through 
computer programmed software designed to delineate, through differential 
fluorescence detection, the nucleus (stained with Hoechst stain) from the 
cytoplasm (detected through expression of endogenous GFP); (C) the 
presence of PEIpp (indicated here as multicolored dots) in the cytoplasm. 
Scale bars in all images represent 100 µm. 
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Figure 4-12 Number of PEIpp in cytoplasmic region of GFP(+) and GFP(-) cell 
populations, as calculated using HCS. Data are presented as mean ± SEM (n 
= 3). **** p < 0.0001. 0.5 µg and 1.0 µg represent the amount of pDNA in 
each well. 
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CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS 

In Chapter 2, we formulated chitosan/pDNA polyplexes or CSpp in the size range 

of 200 – 400 nm in diameter with amine to phosphate (N/P) ratios that ranged from 1 to 

100. We compared two types of pDNA within CSpp: pDNA that was free of CpG 

sequences (CpG(-)) and pDNA that contained CpG sequences (CpG(+)). Both forms of 

CSpp showed low cytotoxicity when incubated with A549 and HEK293 cells in vitro as 

seen by MTS assay (cell proliferation), caspase-3/7 assay (apoptosis) and superoxide 

levels detection (intracellular ROS). CSpp(CpG(-)) generated higher luciferase 

expression in both in vitro, for A549 cells, and in vivo (C57BL/6, murine model), when 

compared with CSpp(CpG(+)), indicating enhanced transfection efficiency. In addition, 

CSpp(CpG(-)) elicited milder inflammatory responses in mice twenty-four hours 

subsequent to nasal instillation, as determined by proinflammatory cytokine levels within 

the bronchoalveolar lavage fluid (Figure 5-1). Our findings suggest that to achieve 

optimal gene expression with minimal cytotoxicity, inflammatory responses and oxidative 

stress, we must not only consider the traits of the delivery vehicle, such as the cationic 

polymer used here, but also the chemical nature of the pDNA. CpG sequences in the 

pDNA of the polyplexes need to be taken into account. These findings will inform the 

preclinical safety assessments of CSpp in pulmonary gene delivery systems. 

 After this study was completed, in 2015, Lindberg et al. 205 also investigated the 

relationship between CpG sequence in pDNA and transfection efficiency of non-viral 

vectors. Lindberg et al. tested the lipoplexes made from the cationic lipid with plasmids 

composed of/free of CpG sequence in vivo. The lipoplexes were administered to Swiss 

mice intravenously 205.  It was found that lipoplexes composed of CpG-free pDNA gave 

higher and more stained transgene expression than those lipoplexes composed of CpG-

pDNA. The result confirms our finding that plasmid free of CpG increases transgene 

expression. This theory holds true in the systems made from different non-viral vectors 
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(cationic polymer and cationic lipid), different plasmids, different mice strains and 

different routes of administration. 

In Chapter 3, the new cationic co-polymer, poly(galactaramidoamine) or PGAA 

was tested for its transfection efficiency and cytotoxicity in vitro. PGAA electrostatically 

complexes with pDNA form small sized particles. We showed that PGAA/pDNA 

polyplexes or PGAApp generated high transfection efficiencies in HEK293 and 

RAW264.7 cells.  PGAApp mediated transfection was a function of the N/P ratio. The 

maximum luciferase expression was obtained using PGAApp made at an N/P ratio of 40. 

This was consistent in both cell lines. Cytotoxicity of PGAApp increased as the N/P 

ratios increased. 

In the future, to fully optimize transfection efficiency and cytotoxicity of PGAApp, 

more experiments are necessary. N/P 60 was chosen as recommended by the company 

(Techulon TM, Blacksburg, VA). We expanded the N/P ratios tested to 40 and 80. Since 

the results suggested that N/P 40 gave the best transfection efficiency and lowest 

cytotoxicity, it is worth investigating at N/P ratios lower than 40. It is possible that at 

lower N/P ratios lower cytotoxicity may be achieved thus leading to higher transgene 

expression. Since PGAA synthesis was inspired by the chemistry and function of 

chitosan and PEI, it is reasonable to compare transfection efficiency and cytotoxicity 

among these three polymers. Moreover, since we know that using CpG-free pDNA 

results in an increase in transgene expression, one could incorporate CpG-free plasmids 

into PGAApp formulations to further improve transfection efficiencies. To date, PGAA or 

Glycofect TM has been tested in various cell lines such as human oral squamous cell 

carcinoma (HCS-3) 206, human dermal fibroblasts (HDFn) 207 and rat mesenchymal stem 

cells (RMSC) 207. To the best of our knowledge, there has been no in vivo study using 

PGAA as a vector. 

Chapter 4 was dedicated to the potential use of high-content screening (HCS) in 

the gene delivery field. High-content screening (HCS) has gained interest in cellular 
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imaging because of its ability to provide statistically significant data from multiple 

parameters simultaneously in cell-based assays. HCS was used to measure transfection 

efficiencies and cytotoxicities of polyplexes made from fluorescently labeled 

polyethylenimine (PEI) and pDNA encoding EGFP. The results generated using HCS 

were confirmed using more conventional and labor-intensive methods. Our findings 

suggest that HCS has the potential to be used as a tool in the field of gene delivery. 

Nowadays, where there are many cationic polymers and modified forms of cationic 

polymers synthesized, it is convenient to have an automated system that can evaluate 

transfection efficiency and cytotoxicity of these polymers. Moreover, the optimization of 

the transfecting conditions and formulations such as polymer molecular weight, N/P 

ratios and order of mixing, could be done simultaneously using HCS.  

For the first time, a relationship between transfected cells and the number of 

polyplexes in the cytoplasm was shown. Four to five polyplexes were found in the 

cytoplasm of successfully transfected cells, whilst non-transfected cells harbored, on 

average, less than one polyplex within the cytoplasm. HCS can not only simultaneously 

measure transfection efficiency and cytotoxicity of various non-viral gene vectors; it can 

also be used to track these vectors through various subcellular compartments.  

In summary, the research goal was to develop polyplex formulations made from 

cationic polymers that mediate optimal transfection efficiencies and low cytotoxicities. 

We found that pDNA composition was important. We also introduced a new system to 

gene delivery field (high-content screening) with the hope that this could help to identify 

the trafficking pathways of various non-viral gene delivery vehicles as well as cellular 

barriers to optimal transgene expression, thereby aiding in the designing of successful 

gene delivery systems in the future. 

 



www.manaraa.com

99 
 

 

Figure 5-1 Schematic represents the results obtained from the Chapter 2. When 
compared with CSpp(CpG(+)), nasal instillation of CSpp(CpG(-)) to mice 
lungs showed higher transfection efficiency. In addition, CSpp(CpG(-)) 
elicited milder inflammatory responses in mice.  
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